論文の概要: Routine Usage of AI-based Chest X-ray Reading Support in a Multi-site
Medical Supply Center
- arxiv url: http://arxiv.org/abs/2210.10779v1
- Date: Mon, 17 Oct 2022 08:06:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-21 14:14:24.409332
- Title: Routine Usage of AI-based Chest X-ray Reading Support in a Multi-site
Medical Supply Center
- Title(参考訳): 多施設医療センターにおけるAIを用いた胸部X線読影支援の日常的活用
- Authors: Karsten Ridder, Alexander Preuhs, Axel Mertins, Clemens Joerger
- Abstract要約: チェストX線画像の評価のための市販のAIソリューションは、複雑な環境で、放射線医や臨床研究員の24/7を支援することができる。
本システムは, 放射線技師や臨床同僚が重要な決定を下す上で, 利用者によらず, 医療機関や病院で, 画像データを作成するX線システムタイプによらず, 堅牢に機能する。
- 参考スコア(独自算出の注目度): 64.91941409801494
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Research question: How can we establish an AI support for reading of chest
X-rays in clinical routine and which benefits emerge for the clinicians and
radiologists. Can it perform 24/7 support for practicing clinicians? 2.
Findings: We installed an AI solution for Chest X-ray in a given structure (MVZ
Uhlenbrock & Partner, Germany). We could demonstrate the practicability,
performance, and benefits in 10 connected clinical sites. 3. Meaning: A
commercially available AI solution for the evaluation of Chest X-ray images is
able to help radiologists and clinical colleagues 24/7 in a complex
environment. The system performs in a robust manner, supporting radiologists
and clinical colleagues in their important decisions, in practises and
hospitals regardless of the user and X-ray system type producing the
image-data.
- Abstract(参考訳): 研究課題: 臨床業務における胸部X線読影のためのAIサポートの確立と, 臨床医や放射線技師にとってのメリットについて検討する。
臨床医の24時間サポートは可能か?
2. 発見: 所定の構造(ドイツのMVZ Uhlenbrock & Partner)にChest X線用のAIソリューションをインストールした。
10ヶ所の臨床現場で実用性, 性能, 便益を示すことができた。
3.意味:胸部x線画像の評価のための市販のaiソリューションは、複雑な環境での放射線科医や臨床研究員の24/7に役立つ。
本システムは, 放射線技師や臨床同僚が重要な決定を下す上で, 利用者によらず, 医療機関や病院で, 画像データを作成するX線システムタイプによらず, 堅牢に機能する。
関連論文リスト
- AI-Assisted Diagnosis for Covid-19 CXR Screening: From Data Collection to Clinical Validation [5.492165569390342]
このプロジェクトの目的は、Chest X-ray(CXR)画像からCovid-19肺炎を診断する最先端のAIベースのシステムを開発することである。
提案した検出モデルは、最先端のデバイアスと組み合わせた2段階のアプローチに基づいて、信頼性の高い結果を提供する。
論文 参考訳(メタデータ) (2024-05-19T16:06:26Z) - Computer-Aided Diagnosis of Thoracic Diseases in Chest X-rays using hybrid CNN-Transformer Architecture [1.0878040851637998]
自動コンピュータ支援診断システムは、胸部X線を解釈し、実行可能な洞察を提供することで、放射線科医を増強することができる。
本研究では,DenseNet121 Convolutional Neural Network(CNN)を付加した新しいアーキテクチャを適用した。
胸部X線による胸部疾患の診断において, 自己注意でCNNを増強する可能性が示唆された。
論文 参考訳(メタデータ) (2024-04-18T01:46:31Z) - Enhancing Human-Computer Interaction in Chest X-ray Analysis using Vision and Language Model with Eye Gaze Patterns [7.6599164274971026]
VLM(Vision-Language Models)は、視線データとテキストプロンプトを併用することで、放射線技師の注意を喚起する。
眼球データから生成した熱マップを医療画像にオーバーレイし、放射線技師の集中した領域をハイライトする。
その結果,視線情報の挿入は胸部X線解析の精度を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2024-04-03T00:09:05Z) - Act Like a Radiologist: Radiology Report Generation across Anatomical Regions [50.13206214694885]
X-RGenは6つの解剖学的領域にわたる放射線学者によるレポート生成フレームワークである。
X-RGenでは、ヒトの放射線学者の行動を模倣し、これらを4つの主要な段階に分解する。
画像エンコーダの認識能力は,各領域にまたがる画像やレポートを分析して向上する。
論文 参考訳(メタデータ) (2023-05-26T07:12:35Z) - Multi-Label Chest X-Ray Classification via Deep Learning [0.0]
本研究の目的は,X線画像から14種類の胸部状態を検出する軽量なソリューションを開発することである。
画像機能に加えて、X線ビュータイプ、年齢、性別などのデータで利用可能な非画像機能も使用します。
本研究の目的は, これまでの研究を改良し, 予測を14疾患に拡張し, 将来の胸部X線撮影研究への洞察を提供することである。
論文 参考訳(メタデータ) (2022-11-27T20:27:55Z) - Computer Vision on X-ray Data in Industrial Production and Security
Applications: A survey [89.45221564651145]
本稿では,コンピュータビジョンと機械学習を用いた産業生産およびセキュリティアプリケーションにおけるX線分析に関する最近の研究をレビューする。
公開されているデータセット上でのアプリケーション、テクニック、評価メトリクス、データセット、それらのテクニックのパフォーマンス比較をカバーしている。
論文 参考訳(メタデータ) (2022-11-10T13:37:36Z) - A Prospective Observational Study to Investigate Performance of a Chest
X-ray Artificial Intelligence Diagnostic Support Tool Across 12 U.S.
Hospitals [5.089367493963538]
人工知能(AI)に基づく、胸部X線(CXR)所見から新型コロナウイルスの可能性を予測するモデルは、臨床的意思決定を加速するための重要な副産物となる。
我々は、時間的および外部的検証に高い性能を持つAIモデルを開発した。
論文 参考訳(メタデータ) (2021-06-03T20:22:32Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
本研究は、COVID-19 LCXRデータ不足のバランスをとるために画像変換を適用するために、文献の体系を活用することを目的としている。
convolutional neural networks(cnns)のようなディープラーニング技術は、健康状態と疾患状態を区別する特徴を選択することができる。
本研究は,CNNアーキテクチャを用いて高速多クラスLCXR分類を94%精度で行う。
論文 参考訳(メタデータ) (2021-04-06T02:01:43Z) - Multi-Task Driven Explainable Diagnosis of COVID-19 using Chest X-ray
Images [61.24431480245932]
COVID-19 Multi-Task Networkは、新型コロナウイルススクリーニングのためのエンドツーエンドネットワークである。
我々は,ChestXray-14,CheXpertおよび統合型COVID-19データセットから採取した9000個の前頭胸部X線写真から肺領域を手動で注釈した。
このデータベースは研究コミュニティに公開されます。
論文 参考訳(メタデータ) (2020-08-03T12:52:23Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
新型コロナウイルス感染症(COVID-19)のパンデミックは世界中に広がっている。
X線やCT(Computerd Tomography)などの医用画像は、世界的な新型コロナウイルス対策に欠かせない役割を担っている。
最近登場した人工知能(AI)技術は、画像ツールの力を強化し、医療専門家を支援する。
論文 参考訳(メタデータ) (2020-04-06T15:21:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。