Concept Induction using LLMs: a user experiment for assessment
- URL: http://arxiv.org/abs/2404.11875v1
- Date: Thu, 18 Apr 2024 03:22:02 GMT
- Title: Concept Induction using LLMs: a user experiment for assessment
- Authors: Adrita Barua, Cara Widmer, Pascal Hitzler,
- Abstract summary: This study explores the potential of a Large Language Model (LLM) to generate high-level concepts that are meaningful as explanations for humans.
We compare the concepts generated by the LLM with two other methods: concepts generated by humans and the ECII concept induction system.
Our findings indicate that while human-generated explanations remain superior, concepts derived from GPT-4 are more comprehensible to humans compared to those generated by ECII.
- Score: 1.1982127665424676
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Explainable Artificial Intelligence (XAI) poses a significant challenge in providing transparent and understandable insights into complex AI models. Traditional post-hoc algorithms, while useful, often struggle to deliver interpretable explanations. Concept-based models offer a promising avenue by incorporating explicit representations of concepts to enhance interpretability. However, existing research on automatic concept discovery methods is often limited by lower-level concepts, costly human annotation requirements, and a restricted domain of background knowledge. In this study, we explore the potential of a Large Language Model (LLM), specifically GPT-4, by leveraging its domain knowledge and common-sense capability to generate high-level concepts that are meaningful as explanations for humans, for a specific setting of image classification. We use minimal textual object information available in the data via prompting to facilitate this process. To evaluate the output, we compare the concepts generated by the LLM with two other methods: concepts generated by humans and the ECII heuristic concept induction system. Since there is no established metric to determine the human understandability of concepts, we conducted a human study to assess the effectiveness of the LLM-generated concepts. Our findings indicate that while human-generated explanations remain superior, concepts derived from GPT-4 are more comprehensible to humans compared to those generated by ECII.
Related papers
- CoLiDR: Concept Learning using Aggregated Disentangled Representations [29.932706137805713]
Interpretability of Deep Neural Networks using concept-based models offers a promising way to explain model behavior through human-understandable concepts.
A parallel line of research focuses on disentangling the data distribution into its underlying generative factors, in turn explaining the data generation process.
While both directions have received extensive attention, little work has been done on explaining concepts in terms of generative factors to unify mathematically disentangled representations and human-understandable concepts.
arXiv Detail & Related papers (2024-07-27T16:55:14Z) - Understanding Multimodal Deep Neural Networks: A Concept Selection View [29.08342307127578]
Concept-based models map the black-box visual representations extracted by deep neural networks onto a set of human-understandable concepts.
We propose a two-stage Concept Selection Model (CSM) to mine core concepts without introducing any human priors.
Our approach achieves comparable performance to end-to-end black-box models.
arXiv Detail & Related papers (2024-04-13T11:06:49Z) - A survey on Concept-based Approaches For Model Improvement [2.1516043775965565]
Concepts are known to be the thinking ground of humans.
We provide a systematic review and taxonomy of various concept representations and their discovery algorithms in Deep Neural Networks (DNNs)
We also provide details on concept-based model improvement literature marking the first comprehensive survey of these methods.
arXiv Detail & Related papers (2024-03-21T17:09:20Z) - ConcEPT: Concept-Enhanced Pre-Training for Language Models [57.778895980999124]
ConcEPT aims to infuse conceptual knowledge into pre-trained language models.
It exploits external entity concept prediction to predict the concepts of entities mentioned in the pre-training contexts.
Results of experiments show that ConcEPT gains improved conceptual knowledge with concept-enhanced pre-training.
arXiv Detail & Related papers (2024-01-11T05:05:01Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Interpretable Neural-Symbolic Concept Reasoning [7.1904050674791185]
Concept-based models aim to address this issue by learning tasks based on a set of human-understandable concepts.
We propose the Deep Concept Reasoner (DCR), the first interpretable concept-based model that builds upon concept embeddings.
arXiv Detail & Related papers (2023-04-27T09:58:15Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - Evaluating Understanding on Conceptual Abstraction Benchmarks [0.0]
A long-held objective in AI is to build systems that understand concepts in a humanlike way.
We argue that understanding a concept requires the ability to use it in varied contexts.
Our concept-based approach to evaluation reveals information about AI systems that conventional test sets would have left hidden.
arXiv Detail & Related papers (2022-06-28T17:52:46Z) - A Minimalist Dataset for Systematic Generalization of Perception,
Syntax, and Semantics [131.93113552146195]
We present a new dataset, Handwritten arithmetic with INTegers (HINT), to examine machines' capability of learning generalizable concepts.
In HINT, machines are tasked with learning how concepts are perceived from raw signals such as images.
We undertake extensive experiments with various sequence-to-sequence models, including RNNs, Transformers, and GPT-3.
arXiv Detail & Related papers (2021-03-02T01:32:54Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.