論文の概要: Sampling-based Pareto Optimization for Chance-constrained Monotone Submodular Problems
- arxiv url: http://arxiv.org/abs/2404.11907v1
- Date: Thu, 18 Apr 2024 05:15:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 13:11:02.772515
- Title: Sampling-based Pareto Optimization for Chance-constrained Monotone Submodular Problems
- Title(参考訳): チャンス制約モノトン部分モジュラー問題に対するサンプリングに基づくパレート最適化
- Authors: Xiankun Yan, Aneta Neumann, Frank Neumann,
- Abstract要約: 本稿では,確率制約を直接評価するサンプリングベース手法を提案する。
より困難な設定でこの問題に対処するため、強化されたGSEMOアルゴリズムが導入された。
ASW-GSEMOとサンプリングベースの評価手法は、他のアルゴリズムよりも優れている。
- 参考スコア(独自算出の注目度): 10.506038775815094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently surrogate functions based on the tail inequalities were developed to evaluate the chance constraints in the context of evolutionary computation and several Pareto optimization algorithms using these surrogates were successfully applied in optimizing chance-constrained monotone submodular problems. However, the difference in performance between algorithms using the surrogates and those employing the direct sampling-based evaluation remains unclear. Within the paper, a sampling-based method is proposed to directly evaluate the chance constraint. Furthermore, to address the problems with more challenging settings, an enhanced GSEMO algorithm integrated with an adaptive sliding window, called ASW-GSEMO, is introduced. In the experiments, the ASW-GSEMO employing the sampling-based approach is tested on the chance-constrained version of the maximum coverage problem with different settings. Its results are compared with those from other algorithms using different surrogate functions. The experimental findings indicate that the ASW-GSEMO with the sampling-based evaluation approach outperforms other algorithms, highlighting that the performances of algorithms using different evaluation methods are comparable. Additionally, the behaviors of ASW-GSEMO are visualized to explain the distinctions between it and the algorithms utilizing the surrogate functions.
- Abstract(参考訳): 近年、進化計算の文脈における確率制約を評価するために尾の不等式に基づく代理関数が開発され、これらのサロゲートを用いたパレート最適化アルゴリズムが、確率制約付き単調部分モジュラー問題の最適化に成功している。
しかし,サロゲートを用いたアルゴリズムと直接サンプリングに基づく評価を用いたアルゴリズムの性能の違いは明らかでない。
本論文では,確率制約を直接評価するために,サンプリングに基づく手法を提案する。
さらに、より困難な設定で問題に対処するため、ASW-GSEMOと呼ばれる適応的なスライディングウインドウと統合された拡張GSEMOアルゴリズムが導入された。
実験では,サンプルベースアプローチを用いたASW-GSEMOを,設定の異なる最大カバレッジ問題の確率制約版で検証した。
結果は、異なる代理関数を用いた他のアルゴリズムと比較される。
実験結果から,サンプリングベース評価手法を用いたASW-GSEMOは,他のアルゴリズムよりも優れており,異なる評価手法を用いたアルゴリズムの性能が同等であることが示唆された。
さらに、ASW-GSEMOの挙動を可視化し、代理関数を利用したアルゴリズムとの違いを説明する。
関連論文リスト
- Sliding Window Bi-Objective Evolutionary Algorithms for Optimizing Chance-Constrained Monotone Submodular Functions [10.506038775815094]
本稿では,[21]で導入されたスライディング・セレクションのアプローチを,確率制約付き単調部分モジュラ関数の最適化に適用する。
SW-GSEMOアルゴリズムは,実行環境に影響を及ぼす重要な要因として,個体数制限に成功していることを示す。
論文 参考訳(メタデータ) (2024-07-13T00:28:29Z) - Modified LAB Algorithm with Clustering-based Search Space Reduction
Method for solving Engineering Design Problems [0.7789406630452325]
本稿では,改良型LABアルゴリズムを提案する。
提案アルゴリズムは、ルーレットホイールアプローチとグループ間競争を導入した還元係数を取り入れたものである。
アルゴリズムは改良され、より優れたロバスト性と探索空間探索能力を示した。
論文 参考訳(メタデータ) (2023-10-04T12:35:13Z) - Best-Effort Adaptation [62.00856290846247]
本稿では, 試料再重み付け法に関する新しい理論的解析を行い, 試料再重み付け法を一様に保持する境界について述べる。
これらの境界が、我々が詳細に議論する学習アルゴリズムの設計を導く方法を示す。
本稿では,本アルゴリズムの有効性を実証する一連の実験結果について報告する。
論文 参考訳(メタデータ) (2023-05-10T00:09:07Z) - Exploring the effectiveness of surrogate-assisted evolutionary
algorithms on the batch processing problem [0.0]
本稿では,文献におけるよく知られたバッチ処理問題のシミュレーションを紹介する。
遺伝的アルゴリズム(GA)や微分進化(DE)といった進化的アルゴリズムを用いてシミュレーションの最適なスケジュールを見つける。
次に、サロゲート支援されたアルゴリズムによって得られる解の質を、ベースラインアルゴリズムと比較する。
論文 参考訳(メタデータ) (2022-10-31T09:00:39Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
決定論的条件と決定論的条件の両方において、二段階最適化問題を解決するアルゴリズムのクラスについて検討する。
厳密な勾配の推定を補正するために、ウォームスタート戦略を利用する。
このフレームワークを用いることで、これらのアルゴリズムは勾配の偏りのない推定値にアクセス可能な手法の計算複雑性と一致することを示す。
論文 参考訳(メタデータ) (2021-11-29T15:10:09Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
分解に基づく多目的進化アルゴリズム(MOEA/D)は、多目的最適化問題(MOP)を解く上で、極めて有望なアプローチであると考えられている。
本稿では,よく知られたPascoletti-Serafiniスキャラライゼーション法とマルチ参照ポイントの新たな戦略により,MOEA/Dアルゴリズムの改良を提案する。
論文 参考訳(メタデータ) (2021-10-27T02:07:08Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
サブグループフィードバックを取り入れた新しいGPレグレッションを導入する。
我々の修正された回帰は、以前のアプローチと比べて、明らかにばらつきを減らし、したがってより正確な後続を減らした。
我々は2つの異なる社会問題に対してアルゴリズムを実行する。
論文 参考訳(メタデータ) (2021-07-07T03:57:22Z) - Learning Sampling Policy for Faster Derivative Free Optimization [100.27518340593284]
ランダムサンプリングではなく,ZO最適化における摂動を生成するためのサンプリングポリシを学習する,新たな強化学習ベースのZOアルゴリズムを提案する。
その結果,ZO-RLアルゴリズムはサンプリングポリシを学習することでZO勾配の分散を効果的に低減し,既存のZOアルゴリズムよりも高速に収束できることが示唆された。
論文 参考訳(メタデータ) (2021-04-09T14:50:59Z) - Optimizing Monotone Chance-Constrained Submodular Functions Using Evolutionary Multi-Objective Algorithms [11.807734722701786]
ここでは制約は成分を伴い、制約はアルファの小さな確率でのみ破ることができる。
GSEMOアルゴリズムは, 単調な部分モジュラ関数に対して, 最悪の性能保証が得られることを示す。
実験結果から, 進化的多目的アルゴリズムを用いることで, 性能が大幅に向上することが示唆された。
論文 参考訳(メタデータ) (2020-06-20T00:17:44Z) - Reparameterized Variational Divergence Minimization for Stable Imitation [57.06909373038396]
確率的発散の選択における変動が、より高性能なILOアルゴリズムをもたらす可能性について検討する。
本稿では,提案する$f$-divergence最小化フレームワークの課題を軽減するために,逆模倣学習のための再パラメータ化手法を提案する。
経験的に、我々の設計選択は、ベースラインアプローチより優れ、低次元連続制御タスクにおける専門家のパフォーマンスとより密に適合するIOOアルゴリズムを許容することを示した。
論文 参考訳(メタデータ) (2020-06-18T19:04:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。