Redefining the Shortest Path Problem Formulation of the Linear Non-Gaussian Acyclic Model: Pairwise Likelihood Ratios, Prior Knowledge, and Path Enumeration
- URL: http://arxiv.org/abs/2404.11922v1
- Date: Thu, 18 Apr 2024 05:59:28 GMT
- Title: Redefining the Shortest Path Problem Formulation of the Linear Non-Gaussian Acyclic Model: Pairwise Likelihood Ratios, Prior Knowledge, and Path Enumeration
- Authors: Hans Jarett J. Ong, Brian Godwin S. Lim,
- Abstract summary: The paper proposes a threefold enhancement to the LiNGAM-SPP framework.
The need for parameter tuning is eliminated by using the pairwise likelihood ratio in lieu of kNN-based mutual information.
The incorporation of prior knowledge is then enabled by a node-skipping strategy implemented on the graph representation of all causal orderings.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective causal discovery is essential for learning the causal graph from observational data. The linear non-Gaussian acyclic model (LiNGAM) operates under the assumption of a linear data generating process with non-Gaussian noise in determining the causal graph. Its assumption of unmeasured confounders being absent, however, poses practical limitations. In response, empirical research has shown that the reformulation of LiNGAM as a shortest path problem (LiNGAM-SPP) addresses this limitation. Within LiNGAM-SPP, mutual information is chosen to serve as the measure of independence. A challenge is introduced - parameter tuning is now needed due to its reliance on kNN mutual information estimators. The paper proposes a threefold enhancement to the LiNGAM-SPP framework. First, the need for parameter tuning is eliminated by using the pairwise likelihood ratio in lieu of kNN-based mutual information. This substitution is validated on a general data generating process and benchmark real-world data sets, outperforming existing methods especially when given a larger set of features. The incorporation of prior knowledge is then enabled by a node-skipping strategy implemented on the graph representation of all causal orderings to eliminate violations based on the provided input of relative orderings. Flexibility relative to existing approaches is achieved. Last among the three enhancements is the utilization of the distribution of paths in the graph representation of all causal orderings. From this, crucial properties of the true causal graph such as the presence of unmeasured confounders and sparsity may be inferred. To some extent, the expected performance of the causal discovery algorithm may be predicted. The refinements above advance the practicality and performance of LiNGAM-SPP, showcasing the potential of graph-search-based methodologies in advancing causal discovery.
Related papers
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Learning Latent Graph Structures and their Uncertainty [63.95971478893842]
Graph Neural Networks (GNNs) use relational information as an inductive bias to enhance the model's accuracy.
As task-relevant relations might be unknown, graph structure learning approaches have been proposed to learn them while solving the downstream prediction task.
arXiv Detail & Related papers (2024-05-30T10:49:22Z) - Hybrid Top-Down Global Causal Discovery with Local Search for Linear and Nonlinear Additive Noise Models [2.0738462952016232]
Methods based on functional causal models can identify a unique graph, but suffer from the curse of dimensionality or impose strong parametric assumptions.
We propose a novel hybrid approach for global causal discovery in observational data that leverages local causal substructures.
We provide theoretical guarantees for correctness and worst-case time complexities, with empirical validation on synthetic data.
arXiv Detail & Related papers (2024-05-23T12:28:16Z) - Probabilistically Rewired Message-Passing Neural Networks [41.554499944141654]
Message-passing graph neural networks (MPNNs) emerged as powerful tools for processing graph-structured input.
MPNNs operate on a fixed input graph structure, ignoring potential noise and missing information.
We devise probabilistically rewired MPNNs (PR-MPNNs) which learn to add relevant edges while omitting less beneficial ones.
arXiv Detail & Related papers (2023-10-03T15:43:59Z) - Joint Graph Learning and Model Fitting in Laplacian Regularized
Stratified Models [5.933030735757292]
Laplacian regularized stratified models (LRSM) are models that utilize the explicit or implicit network structure of the sub-problems.
This paper shows the importance and sensitivity of graph weights in LRSM, and provably show that the sensitivity can be arbitrarily large.
We propose a generic approach to jointly learn the graph while fitting the model parameters by solving a single optimization problem.
arXiv Detail & Related papers (2023-05-04T06:06:29Z) - Estimation of a Causal Directed Acyclic Graph Process using
Non-Gaussianity [3.04585143845864]
We propose a new approach to discover causal dependencies in machine learning and data mining.
The CGP-LiNGAM has significantly fewer model parameters and deals with only one causal graph for interpreting the causal relations.
arXiv Detail & Related papers (2022-11-24T21:09:55Z) - MissDAG: Causal Discovery in the Presence of Missing Data with
Continuous Additive Noise Models [78.72682320019737]
We develop a general method, which we call MissDAG, to perform causal discovery from data with incomplete observations.
MissDAG maximizes the expected likelihood of the visible part of observations under the expectation-maximization framework.
We demonstrate the flexibility of MissDAG for incorporating various causal discovery algorithms and its efficacy through extensive simulations and real data experiments.
arXiv Detail & Related papers (2022-05-27T09:59:46Z) - BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery [97.79015388276483]
A structural equation model (SEM) is an effective framework to reason over causal relationships represented via a directed acyclic graph (DAG)
Recent advances enabled effective maximum-likelihood point estimation of DAGs from observational data.
We propose BCD Nets, a variational framework for estimating a distribution over DAGs characterizing a linear-Gaussian SEM.
arXiv Detail & Related papers (2021-12-06T03:35:21Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
Graph Neural Networks (GNNs) are proposed without considering the distribution shifts between training and testing graphs.
In such a setting, GNNs tend to exploit subtle statistical correlations existing in the training set for predictions, even though it is a spurious correlation.
We propose a general causal representation framework, called StableGNN, to eliminate the impact of spurious correlations.
arXiv Detail & Related papers (2021-11-20T18:57:18Z) - Efficient Neural Causal Discovery without Acyclicity Constraints [30.08586535981525]
We present ENCO, an efficient structure learning method for directed, acyclic causal graphs.
In experiments, we show that ENCO can efficiently recover graphs with hundreds of nodes, an order of magnitude larger than what was previously possible.
arXiv Detail & Related papers (2021-07-22T07:01:41Z) - CASTLE: Regularization via Auxiliary Causal Graph Discovery [89.74800176981842]
We introduce Causal Structure Learning (CASTLE) regularization and propose to regularize a neural network by jointly learning the causal relationships between variables.
CASTLE efficiently reconstructs only the features in the causal DAG that have a causal neighbor, whereas reconstruction-based regularizers suboptimally reconstruct all input features.
arXiv Detail & Related papers (2020-09-28T09:49:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.