Trusted Multi-view Learning with Label Noise
- URL: http://arxiv.org/abs/2404.11944v2
- Date: Fri, 10 May 2024 06:20:22 GMT
- Title: Trusted Multi-view Learning with Label Noise
- Authors: Cai Xu, Yilin Zhang, Ziyu Guan, Wei Zhao,
- Abstract summary: Multi-view learning methods often focus on improving decision accuracy while neglecting the decision uncertainty.
We propose a trusted multi-view noise refining method to solve this problem.
We empirically compare TMNR with state-of-the-art trusted multi-view learning and label noise learning baselines on 5 publicly available datasets.
- Score: 17.458306450909316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-view learning methods often focus on improving decision accuracy while neglecting the decision uncertainty, which significantly restricts their applications in safety-critical applications. To address this issue, researchers propose trusted multi-view methods that learn the class distribution for each instance, enabling the estimation of classification probabilities and uncertainty. However, these methods heavily rely on high-quality ground-truth labels. This motivates us to delve into a new generalized trusted multi-view learning problem: how to develop a reliable multi-view learning model under the guidance of noisy labels? We propose a trusted multi-view noise refining method to solve this problem. We first construct view-opinions using evidential deep neural networks, which consist of belief mass vectors and uncertainty estimates. Subsequently, we design view-specific noise correlation matrices that transform the original opinions into noisy opinions aligned with the noisy labels. Considering label noises originating from low-quality data features and easily-confused classes, we ensure that the diagonal elements of these matrices are inversely proportional to the uncertainty, while incorporating class relations into the off-diagonal elements. Finally, we aggregate the noisy opinions and employ a generalized maximum likelihood loss on the aggregated opinion for model training, guided by the noisy labels. We empirically compare TMNR with state-of-the-art trusted multi-view learning and label noise learning baselines on 5 publicly available datasets. Experiment results show that TMNR outperforms baseline methods on accuracy, reliability and robustness. The code and appendix are released at https://github.com/YilinZhang107/TMNR.
Related papers
- Robust Learning under Hybrid Noise [24.36707245704713]
We propose a novel unified learning framework called "Feature and Label Recovery" (FLR) to combat the hybrid noise from the perspective of data recovery.
arXiv Detail & Related papers (2024-07-04T16:13:25Z) - Multi-Label Noise Transition Matrix Estimation with Label Correlations:
Theory and Algorithm [73.94839250910977]
Noisy multi-label learning has garnered increasing attention due to the challenges posed by collecting large-scale accurate labels.
The introduction of transition matrices can help model multi-label noise and enable the development of statistically consistent algorithms.
We propose a novel estimator that leverages label correlations without the need for anchor points or precise fitting of noisy class posteriors.
arXiv Detail & Related papers (2023-09-22T08:35:38Z) - Co-Learning Meets Stitch-Up for Noisy Multi-label Visual Recognition [70.00984078351927]
This paper focuses on reducing noise based on some inherent properties of multi-label classification and long-tailed learning under noisy cases.
We propose a Stitch-Up augmentation to synthesize a cleaner sample, which directly reduces multi-label noise.
A Heterogeneous Co-Learning framework is further designed to leverage the inconsistency between long-tailed and balanced distributions.
arXiv Detail & Related papers (2023-07-03T09:20:28Z) - Robust Long-Tailed Learning under Label Noise [50.00837134041317]
This work investigates the label noise problem under long-tailed label distribution.
We propose a robust framework,algo, that realizes noise detection for long-tailed learning.
Our framework can naturally leverage semi-supervised learning algorithms to further improve the generalisation.
arXiv Detail & Related papers (2021-08-26T03:45:00Z) - Learning Noise Transition Matrix from Only Noisy Labels via Total
Variation Regularization [88.91872713134342]
We propose a theoretically grounded method that can estimate the noise transition matrix and learn a classifier simultaneously.
We show the effectiveness of the proposed method through experiments on benchmark and real-world datasets.
arXiv Detail & Related papers (2021-02-04T05:09:18Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z) - Multi-Objective Interpolation Training for Robustness to Label Noise [17.264550056296915]
We show that standard supervised contrastive learning degrades in the presence of label noise.
We propose a novel label noise detection method that exploits the robust feature representations learned via contrastive learning.
Experiments on synthetic and real-world noise benchmarks demonstrate that MOIT/MOIT+ achieves state-of-the-art results.
arXiv Detail & Related papers (2020-12-08T15:01:54Z) - Meta Transition Adaptation for Robust Deep Learning with Noisy Labels [61.8970957519509]
This study proposes a new meta-transition-learning strategy for the task.
Specifically, through the sound guidance of a small set of meta data with clean labels, the noise transition matrix and the classifier parameters can be mutually ameliorated.
Our method can more accurately extract the transition matrix, naturally following its more robust performance than prior arts.
arXiv Detail & Related papers (2020-06-10T07:27:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.