論文の概要: Aligning Language Models to Explicitly Handle Ambiguity
- arxiv url: http://arxiv.org/abs/2404.11972v1
- Date: Thu, 18 Apr 2024 07:59:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 13:01:02.033056
- Title: Aligning Language Models to Explicitly Handle Ambiguity
- Title(参考訳): あいまいさを明示的に扱えるように言語モデルを調整する
- Authors: Hyuhng Joon Kim, Youna Kim, Cheonbok Park, Junyeob Kim, Choonghyun Park, Kang Min Yoo, Sang-goo Lee, Taeuk Kim,
- Abstract要約: 音声言語では、発話は効率性のために不完全または曖昧な形をしていることが多い。
モデルがユーザクエリの本質的なあいまいさを十分に扱うためには、非常に重要です。
本稿では,あいまいな入力を明示的に処理する対話エージェントのアライメント手法を提案する。
- 参考スコア(独自算出の注目度): 22.078095273053506
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In spoken languages, utterances are often shaped to be incomplete or vague for efficiency. This can lead to varying interpretations of the same input, based on different assumptions about the context. To ensure reliable user-model interactions in such scenarios, it is crucial for models to adeptly handle the inherent ambiguity in user queries. However, conversational agents built upon even the most recent large language models (LLMs) face challenges in processing ambiguous inputs, primarily due to the following two hurdles: (1) LLMs are not directly trained to handle inputs that are too ambiguous to be properly managed; (2) the degree of ambiguity in an input can vary according to the intrinsic knowledge of the LLMs, which is difficult to investigate. To address these issues, this paper proposes a method to align LLMs to explicitly handle ambiguous inputs. Specifically, we introduce a proxy task that guides LLMs to utilize their intrinsic knowledge to self-disambiguate a given input. We quantify the information gain from the disambiguation procedure as a measure of the extent to which the models perceive their inputs as ambiguous. This measure serves as a cue for selecting samples deemed ambiguous from the models' perspectives, which are then utilized for alignment. Experimental results from several question-answering datasets demonstrate that the LLMs fine-tuned with our approach are capable of handling ambiguous inputs while still performing competitively on clear questions within the task.
- Abstract(参考訳): 音声言語では、発話は効率性のために不完全または曖昧な形をしていることが多い。
これは、コンテキストに関する様々な仮定に基づいて、同じ入力の異なる解釈につながる可能性がある。
このようなシナリオにおける信頼性の高いユーザモデルインタラクションを保証するためには、モデルがユーザクエリの本質的なあいまいさを十分に処理することが不可欠である。
しかし,最近の大規模言語モデル (LLMs) においても,(1) LLM は適切に管理するには不明瞭すぎる入力を扱うために直接訓練されていないこと,(2) LLM の本質的な知識によって,入力のあいまいさの程度が変化すること,という2つのハードルがある。
これらの問題に対処するため,本論文では,不明瞭な入力を明示的に処理するためにLLMを整列する手法を提案する。
具体的には,所与の入力を自明にするために,本質的な知識を活用するためにLLMを誘導するプロキシタスクを導入する。
両モデルが入力を曖昧であると知覚する程度を測る尺度として,曖昧な手続きから得られる情報を定量化する。
この尺度は、モデルの観点から曖昧であると考えられるサンプルを選択するためのキューとして機能し、アライメントに使用される。
いくつかの質問応答データセットによる実験結果から、我々のアプローチで微調整されたLLMは、タスク内の明確な質問に対して競争力を維持しながら、あいまいな入力を処理可能であることが示された。
関連論文リスト
- Do LLMs Really Adapt to Domains? An Ontology Learning Perspective [2.0755366440393743]
大規模言語モデル(LLM)は、様々なアプリケーション領域において、様々な自然言語処理タスクに対して前例のない進歩を見せている。
近年の研究では、LLMが知識ベースコンプリート(KBC)やオントロジー学習(OL)などの語彙意味タスクに活用できることが示されている。
LLMは本当にドメインに適応し、構造化知識の抽出に一貫性を持ち続けるのか、それとも推論の代わりに語彙感覚のみを学ぶのか?
論文 参考訳(メタデータ) (2024-07-29T13:29:43Z) - To Know or Not To Know? Analyzing Self-Consistency of Large Language Models under Ambiguity [27.10502683001428]
本稿では, 実体型あいまいさに着目し, 不明瞭な実体を刺激した場合の事実知識の適用において, 最先端のLCMの習熟度と一貫性を解析する。
実験の結果、LLMは正しいエンティティの読み取りを選択するのに苦労し、平均精度は85%、未特定のプロンプトで75%と低いことがわかった。
論文 参考訳(メタデータ) (2024-07-24T09:48:48Z) - LLMs' Reading Comprehension Is Affected by Parametric Knowledge and Struggles with Hypothetical Statements [59.71218039095155]
言語モデルの自然言語理解(NLU)能力を評価するための主要な手段として、読解理解(RC)があげられる。
文脈がモデルの内部知識と一致している場合、モデルの回答がコンテキスト理解に由来するのか、あるいは内部情報から生じるのかを識別することは困難である。
この問題に対処するために、架空の事実や実体に基づいて、想像上のデータにRCを使うことを提案する。
論文 参考訳(メタデータ) (2024-04-09T13:08:56Z) - Can Large Language Models Identify Authorship? [16.35265384114857]
大規模言語モデル(LLM)は、推論と問題解決の特別な能力を示している。
1) LLM はゼロショット・エンド・ツー・エンドのオーサシップ検証を効果的に行うことができるか?
2) LLM は,複数の候補作家(例えば,10,20)の著者を正確に帰属させることができるか?
論文 参考訳(メタデータ) (2024-03-13T03:22:02Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
大規模言語モデル(LLM)の画期的な能力として、文脈内学習が登場している。
両タイプの不確かさを定量化するための新しい定式化法とそれに対応する推定法を提案する。
提案手法は、プラグイン・アンド・プレイ方式でコンテキスト内学習の予測を理解するための教師なしの方法を提供する。
論文 参考訳(メタデータ) (2024-02-15T18:46:24Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - Simple Linguistic Inferences of Large Language Models (LLMs): Blind Spots and Blinds [59.71218039095155]
我々は,ほとんどの人間が自明に感じる単純な推論タスクにおいて,言語理解能力を評価する。
我々は, (i) 文法的に特定された含意, (ii) 不確実性のある明らかな副詞を持つ前提, (iii) 単調性含意を目標とする。
モデルはこれらの評価セットに対して中程度から低い性能を示す。
論文 参考訳(メタデータ) (2023-05-24T06:41:09Z) - We're Afraid Language Models Aren't Modeling Ambiguity [136.8068419824318]
あいまいさの管理は人間の言語理解の重要な部分です。
文中のあいまいさは,他の文との係り受け関係に与える影響によって特徴付けられる。
我々は,多ラベルNLIモデルが曖昧さによって誤解を招く野生の政治的主張にフラグを付けることができることを示す。
論文 参考訳(メタデータ) (2023-04-27T17:57:58Z) - P-Adapters: Robustly Extracting Factual Information from Language Models
with Diverse Prompts [7.657992756210283]
埋め込み層と大規模言語モデルの第一の注意層の間に位置する軽量モデルであるP-Adaptersを紹介します。
LLMの埋め込みを入力とし、LLMに問い合わせるのに使用される連続的なプロンプトを出力する。
それらは、一貫性の12~26%の絶対的な改善と、自然言語クエリのみを使用するベースラインよりも36~50%の精度の絶対的な改善を示す。
論文 参考訳(メタデータ) (2021-10-14T11:32:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。