Data-free Knowledge Distillation for Fine-grained Visual Categorization
- URL: http://arxiv.org/abs/2404.12037v1
- Date: Thu, 18 Apr 2024 09:44:56 GMT
- Title: Data-free Knowledge Distillation for Fine-grained Visual Categorization
- Authors: Renrong Shao, Wei Zhang, Jianhua Yin, Jun Wang,
- Abstract summary: We propose an approach called DFKD-FGVC that extends DFKD to fine-grained visual categorization(FGVC) tasks.
We evaluate our approach on three widely-used FGVC benchmarks (Aircraft, Cars196, and CUB200) and demonstrate its superior performance.
- Score: 9.969720644789781
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-free knowledge distillation (DFKD) is a promising approach for addressing issues related to model compression, security privacy, and transmission restrictions. Although the existing methods exploiting DFKD have achieved inspiring achievements in coarse-grained classification, in practical applications involving fine-grained classification tasks that require more detailed distinctions between similar categories, sub-optimal results are obtained. To address this issue, we propose an approach called DFKD-FGVC that extends DFKD to fine-grained visual categorization~(FGVC) tasks. Our approach utilizes an adversarial distillation framework with attention generator, mixed high-order attention distillation, and semantic feature contrast learning. Specifically, we introduce a spatial-wise attention mechanism to the generator to synthesize fine-grained images with more details of discriminative parts. We also utilize the mixed high-order attention mechanism to capture complex interactions among parts and the subtle differences among discriminative features of the fine-grained categories, paying attention to both local features and semantic context relationships. Moreover, we leverage the teacher and student models of the distillation framework to contrast high-level semantic feature maps in the hyperspace, comparing variances of different categories. We evaluate our approach on three widely-used FGVC benchmarks (Aircraft, Cars196, and CUB200) and demonstrate its superior performance.
Related papers
- Prototypical Hash Encoding for On-the-Fly Fine-Grained Category Discovery [65.16724941038052]
Category-aware Prototype Generation (CPG) and Discrimi Category 5.3% (DCE) are proposed.
CPG enables the model to fully capture the intra-category diversity by representing each category with multiple prototypes.
DCE boosts the discrimination ability of hash code with the guidance of the generated category prototypes.
arXiv Detail & Related papers (2024-10-24T23:51:40Z) - An Information Compensation Framework for Zero-Shot Skeleton-based Action Recognition [49.45660055499103]
Zero-shot human skeleton-based action recognition aims to construct a model that can recognize actions outside the categories seen during training.
Previous research has focused on aligning sequences' visual and semantic spatial distributions.
We introduce a new loss function sampling method to obtain a tight and robust representation.
arXiv Detail & Related papers (2024-06-02T06:53:01Z) - Detail Reinforcement Diffusion Model: Augmentation Fine-Grained Visual Categorization in Few-Shot Conditions [11.121652649243119]
Diffusion models have been widely adopted in data augmentation due to their outstanding diversity in data generation.
We propose a novel approach termed the detail reinforcement diffusion model(DRDM)
It leverages the rich knowledge of large models for fine-grained data augmentation and comprises two key components including discriminative semantic recombination (DSR) and spatial knowledge reference(SKR)
arXiv Detail & Related papers (2023-09-15T01:28:59Z) - Knowledge Diffusion for Distillation [53.908314960324915]
The representation gap between teacher and student is an emerging topic in knowledge distillation (KD)
We state that the essence of these methods is to discard the noisy information and distill the valuable information in the feature.
We propose a novel KD method dubbed DiffKD, to explicitly denoise and match features using diffusion models.
arXiv Detail & Related papers (2023-05-25T04:49:34Z) - R2-Trans:Fine-Grained Visual Categorization with Redundancy Reduction [21.11038841356125]
Fine-grained visual categorization (FGVC) aims to discriminate similar subcategories, whose main challenge is the large intraclass diversities and subtle inter-class differences.
We present a novel approach for FGVC, which can simultaneously make use of partial yet sufficient discriminative information in environmental cues and also compress the redundant information in class-token with respect to the target.
arXiv Detail & Related papers (2022-04-21T13:35:38Z) - Channel DropBlock: An Improved Regularization Method for Fine-Grained
Visual Classification [58.07257910065007]
Existing approaches mainly tackle this problem by introducing attention mechanisms to locate the discriminative parts or feature encoding approaches to extract the highly parameterized features in a weakly-supervised fashion.
In this work, we propose a lightweight yet effective regularization method named Channel DropBlock (CDB) in combination with two alternative correlation metrics, to address this problem.
arXiv Detail & Related papers (2021-06-07T09:03:02Z) - Interpretable Attention Guided Network for Fine-grained Visual
Classification [36.657203916383594]
Fine-grained visual classification (FGVC) is challenging but more critical than traditional classification tasks.
We propose an Interpretable Attention Guided Network (IAGN) for fine-grained visual classification.
arXiv Detail & Related papers (2021-03-08T12:27:51Z) - Fine-Grained Visual Classification via Progressive Multi-Granularity
Training of Jigsaw Patches [67.51747235117]
Fine-grained visual classification (FGVC) is much more challenging than traditional classification tasks.
Recent works mainly tackle this problem by focusing on how to locate the most discriminative parts.
We propose a novel framework for fine-grained visual classification to tackle these problems.
arXiv Detail & Related papers (2020-03-08T19:27:30Z) - Weakly Supervised Attention Pyramid Convolutional Neural Network for
Fine-Grained Visual Classification [71.96618723152487]
We introduce Attention Pyramid Convolutional Neural Network (AP-CNN)
AP-CNN learns both high-level semantic and low-level detailed feature representation.
It can be trained end-to-end, without the need of additional bounding box/part annotations.
arXiv Detail & Related papers (2020-02-09T12:33:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.