論文の概要: PureForest: A Large-Scale Aerial Lidar and Aerial Imagery Dataset for Tree Species Classification in Monospecific Forests
- arxiv url: http://arxiv.org/abs/2404.12064v2
- Date: Tue, 14 May 2024 06:56:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 18:42:17.834142
- Title: PureForest: A Large-Scale Aerial Lidar and Aerial Imagery Dataset for Tree Species Classification in Monospecific Forests
- Title(参考訳): PureForest: 単種林における樹種分類のための大規模空中ライダーと空中画像データセット
- Authors: Charles Gaydon, Floryne Roche,
- Abstract要約: 木種分類用に設計された大規模でオープンなマルチモーダルデータセットであるPureForestデータセットを提案する。
樹種分類のための現在の一般のLidarデータセットは、ほとんどの場合、数十ヘクタールの注釈付きヘクタールの小さな領域にしか達しないため、多様性が低い。
対照的に、PureForestは18の樹種を13のセマンティッククラスに分類し、449の異なる単種林に339 km$2$で分布する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge of tree species distribution is fundamental to managing forests. New deep learning approaches promise significant accuracy gains for forest mapping, and are becoming a critical tool for mapping multiple tree species at scale. To advance the field, deep learning researchers need large benchmark datasets with high-quality annotations. To this end, we present the PureForest dataset: a large-scale, open, multimodal dataset designed for tree species classification from both Aerial Lidar Scanning (ALS) point clouds and Very High Resolution (VHR) aerial images. Most current public Lidar datasets for tree species classification have low diversity as they only span a small area of a few dozen annotated hectares at most. In contrast, PureForest has 18 tree species grouped into 13 semantic classes, and spans 339 km$^2$ across 449 distinct monospecific forests, and is to date the largest and most comprehensive Lidar dataset for the identification of tree species. By making PureForest publicly available, we hope to provide a challenging benchmark dataset to support the development of deep learning approaches for tree species identification from Lidar and/or aerial imagery. In this data paper, we describe the annotation workflow, the dataset, the recommended evaluation methodology, and establish a baseline performance from both 3D and 2D modalities.
- Abstract(参考訳): 樹種の分布に関する知識は、森林の管理に不可欠である。
新たな深層学習アプローチは森林マッピングの精度向上を約束し、大規模に複数の樹種をマッピングするための重要なツールになりつつある。
この分野を前進させるためには、ディープラーニング研究者は高品質なアノテーションを備えた大規模なベンチマークデータセットが必要である。
この目的のために,Aerial Lidar Scanning (ALS) 点雲とVery High Resolution (VHR) 空中画像の両方から木種分類用に設計された大規模でオープンなマルチモーダルデータセットであるPureForestデータセットを提案する。
樹種分類のための現在の一般のLidarデータセットは、ほとんどの場合、数十ヘクタールの注釈付きヘクタールの小さな領域にしか達しないため、多様性が低い。
対照的に、PureForestは18の樹木種を13のセマンティッククラスに分類し、449の異なる単種林に339 km$^2$で分布し、現在では樹木種を特定するための最大かつ最も包括的なLidarデータセットとなっている。
PureForestを一般公開することで、Lidarや空中画像から木種を識別するためのディープラーニングアプローチの開発を支援するための、挑戦的なベンチマークデータセットを提供したいと思っています。
本稿では,アノテーションのワークフロー,データセット,推奨評価手法について述べるとともに,3次元モードと2次元モードの両方からベースライン性能を確立する。
関連論文リスト
- Mining Field Data for Tree Species Recognition at Scale [1.264462543503282]
本研究では,森林目録データから種ラベルを自動的に抽出する手法を提案する。
空中画像のツリーインスタンスを識別し,人間による関与がほとんどないフィールドデータと照合する。
論文 参考訳(メタデータ) (2024-08-28T14:25:35Z) - Benchmarking tree species classification from proximally-sensed laser scanning data: introducing the FOR-species20K dataset [1.2771525473423657]
FOR-species20Kベンチマークが作成され、33種から20,000以上の樹点雲が形成された。
このデータセットは、樹種分類のためのDLモデルのベンチマークを可能にする。
トップモデルであるDetailViewは特に堅牢で、データの不均衡をうまく処理し、ツリーサイズを効果的に一般化する。
論文 参考訳(メタデータ) (2024-08-12T21:47:15Z) - OAM-TCD: A globally diverse dataset of high-resolution tree cover maps [8.336960607169175]
OpenMap (OAM) から得られた高解像度の空中画像において, ツリークラウンデライン化(TCD)のための新しいオープンアクセスデータセットを提案する。
我々のデータセットであるOAM-TCDは、50722048x2048px画像を10cm/px解像度で、関連する280k個以上の木と56k個の木からなる。
データセットを使用して、既存の最先端モデルと比較する参照インスタンスとセマンティックセグメンテーションモデルをトレーニングする。
論文 参考訳(メタデータ) (2024-07-16T14:11:29Z) - Lidar-based Norwegian tree species detection using deep learning [0.36651088217486427]
本稿では,ライダーデータのみを用いた深層学習に基づく木種分類モデルを提案する。
このモデルは、部分的な弱いラベルに対する焦点損失で訓練される。
本モデルでは,独立検証におけるマクロ平均F1スコア0.70を達成する。
論文 参考訳(メタデータ) (2023-11-10T14:01:05Z) - TreeLearn: A Comprehensive Deep Learning Method for Segmenting
Individual Trees from Ground-Based LiDAR Forest Point Clouds [42.87502453001109]
森林点雲のツリーインスタンスセグメンテーションのためのディープラーニングに基づくアプローチであるTreeLearnを提案する。
TreeLearnは、すでにセグメンテーションされたポイントクラウドにデータ駆動でトレーニングされているため、事前に定義された機能やアルゴリズムに依存しない。
我々は、Lidar360ソフトウェアを使って6665本の木の森林点雲上でTreeLearnを訓練した。
論文 参考訳(メタデータ) (2023-09-15T15:20:16Z) - Visualizing hierarchies in scRNA-seq data using a density tree-biased
autoencoder [50.591267188664666]
本研究では,高次元scRNA-seqデータから意味のある木構造を同定する手法を提案する。
次に、低次元空間におけるデータのツリー構造を強調する木バイアスオートエンコーダDTAEを紹介する。
論文 参考訳(メタデータ) (2021-02-11T08:48:48Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
この論文は、いくつかの重要な側面で深い森林のアイデアをさらに拡張します。
我々は、ノードがハードバイナリ決定ではなく、確率的ルーティング決定、すなわちソフトルーティングを行う確率的ツリーを採用する。
MNISTデータセットの実験は、私たちの力のある深部森林が[1]、[3]よりも優れたまたは匹敵するパフォーマンスを達成できることを示しています。
論文 参考訳(メタデータ) (2020-12-29T18:05:05Z) - Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance
Segmentation [75.93960390191262]
我々は、オブジェクトカテゴリ間の関係に関する事前知識を利用して、きめ細かいクラスを粗い親クラスにクラスタリングする。
そこで本研究では,NMS再サンプリング法を提案する。
提案手法はフォレストR-CNNと呼ばれ,ほとんどのオブジェクト認識モデルに適用可能なプラグイン・アンド・プレイモジュールとして機能する。
論文 参考訳(メタデータ) (2020-08-13T03:52:37Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
複数の屋外シーン理解タスクに対して,リッチな注釈付き3Dポイントクラウドデータセットを提案する。
データセットは階層型ラベルとインスタンスベースのラベルの両方でポイントワイズアノテートされている。
本稿では,3次元点雲分割のための階層的学習問題を定式化し,様々な階層間の整合性を評価することを提案する。
論文 参考訳(メタデータ) (2020-08-11T19:10:32Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
動的プログラミングと探索に基づいて最適な分類木を学習するための新しいアルゴリズムを提案する。
当社のアプローチでは,最先端技術が必要とする時間のごく一部しか使用せず,数万のインスタンスでデータセットを処理することが可能です。
論文 参考訳(メタデータ) (2020-07-24T17:06:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。