PureForest: A Large-Scale Aerial Lidar and Aerial Imagery Dataset for Tree Species Classification in Monospecific Forests
- URL: http://arxiv.org/abs/2404.12064v2
- Date: Tue, 14 May 2024 06:56:53 GMT
- Title: PureForest: A Large-Scale Aerial Lidar and Aerial Imagery Dataset for Tree Species Classification in Monospecific Forests
- Authors: Charles Gaydon, Floryne Roche,
- Abstract summary: We present the PureForest dataset: a large-scale, open, multimodal dataset designed for tree species classification.
Most current public Lidar datasets for tree species classification have low diversity as they only span a small area of a few dozen annotated hectares at most.
In contrast, PureForest has 18 tree species grouped into 13 semantic classes, and spans 339 km$2$ across 449 distinct monospecific forests.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge of tree species distribution is fundamental to managing forests. New deep learning approaches promise significant accuracy gains for forest mapping, and are becoming a critical tool for mapping multiple tree species at scale. To advance the field, deep learning researchers need large benchmark datasets with high-quality annotations. To this end, we present the PureForest dataset: a large-scale, open, multimodal dataset designed for tree species classification from both Aerial Lidar Scanning (ALS) point clouds and Very High Resolution (VHR) aerial images. Most current public Lidar datasets for tree species classification have low diversity as they only span a small area of a few dozen annotated hectares at most. In contrast, PureForest has 18 tree species grouped into 13 semantic classes, and spans 339 km$^2$ across 449 distinct monospecific forests, and is to date the largest and most comprehensive Lidar dataset for the identification of tree species. By making PureForest publicly available, we hope to provide a challenging benchmark dataset to support the development of deep learning approaches for tree species identification from Lidar and/or aerial imagery. In this data paper, we describe the annotation workflow, the dataset, the recommended evaluation methodology, and establish a baseline performance from both 3D and 2D modalities.
Related papers
- Mining Field Data for Tree Species Recognition at Scale [1.264462543503282]
We present a methodology to automatically mine species labels from public forest inventory data.
We identify tree instances in aerial imagery and match them with field data with close to zero human involvement.
arXiv Detail & Related papers (2024-08-28T14:25:35Z) - Benchmarking tree species classification from proximally-sensed laser scanning data: introducing the FOR-species20K dataset [1.2771525473423657]
FOR-species20K benchmark was created, comprising over 20,000 tree point clouds from 33 species.
This dataset enables the benchmarking of DL models for tree species classification.
The top model, DetailView, was particularly robust, handling data imbalances well and generalizing effectively across tree sizes.
arXiv Detail & Related papers (2024-08-12T21:47:15Z) - OAM-TCD: A globally diverse dataset of high-resolution tree cover maps [8.336960607169175]
We present a novel open-access dataset for individual tree crown delineation (TCD) in high-resolution aerial imagery sourced from OpenMap (OAM)
Our dataset, OAM-TCD, comprises 5072 2048x2048px images at 10 cm/px resolution with associated human-labeled instance masks for over 280k individual and 56k groups of trees.
Using our dataset, we train reference instance and semantic segmentation models that compare favorably to existing state-of-the-art models.
arXiv Detail & Related papers (2024-07-16T14:11:29Z) - Lidar-based Norwegian tree species detection using deep learning [0.36651088217486427]
We present a deep learning based tree species classification model utilizing only lidar data.
The model is trained with focal loss over partial weak labels.
Our model achieves a macro-averaged F1 score of 0.70 on an independent validation.
arXiv Detail & Related papers (2023-11-10T14:01:05Z) - TreeLearn: A Comprehensive Deep Learning Method for Segmenting
Individual Trees from Ground-Based LiDAR Forest Point Clouds [42.87502453001109]
We propose TreeLearn, a deep learning-based approach for tree instance segmentation of forest point clouds.
TreeLearn is trained on already segmented point clouds in a data-driven manner, making it less reliant on predefined features and algorithms.
We trained TreeLearn on forest point clouds of 6665 trees, labeled using the Lidar360 software.
arXiv Detail & Related papers (2023-09-15T15:20:16Z) - Visualizing hierarchies in scRNA-seq data using a density tree-biased
autoencoder [50.591267188664666]
We propose an approach for identifying a meaningful tree structure from high-dimensional scRNA-seq data.
We then introduce DTAE, a tree-biased autoencoder that emphasizes the tree structure of the data in low dimensional space.
arXiv Detail & Related papers (2021-02-11T08:48:48Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
This paper further extends the deep forest idea in several important aspects.
We employ a probabilistic tree whose nodes make probabilistic routing decisions, a.k.a., soft routing, rather than hard binary decisions.
Experiments on the MNIST dataset demonstrate that our empowered deep forests can achieve better or comparable performance than [1],[3].
arXiv Detail & Related papers (2020-12-29T18:05:05Z) - Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance
Segmentation [75.93960390191262]
We exploit prior knowledge of the relations among object categories to cluster fine-grained classes into coarser parent classes.
We propose a simple yet effective resampling method, NMS Resampling, to re-balance the data distribution.
Our method, termed as Forest R-CNN, can serve as a plug-and-play module being applied to most object recognition models.
arXiv Detail & Related papers (2020-08-13T03:52:37Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
We present a richly-annotated 3D point cloud dataset for multiple outdoor scene understanding tasks.
The dataset has been point-wisely annotated with both hierarchical and instance-based labels.
We formulate a hierarchical learning problem for 3D point cloud segmentation and propose a measurement evaluating consistency across various hierarchies.
arXiv Detail & Related papers (2020-08-11T19:10:32Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
We present a novel algorithm for learning optimal classification trees based on dynamic programming and search.
Our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances.
arXiv Detail & Related papers (2020-07-24T17:06:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.