Mining Field Data for Tree Species Recognition at Scale
- URL: http://arxiv.org/abs/2408.15816v1
- Date: Wed, 28 Aug 2024 14:25:35 GMT
- Title: Mining Field Data for Tree Species Recognition at Scale
- Authors: Dimitri Gominski, Daniel Ortiz-Gonzalo, Martin Brandt, Maurice Mugabowindekwe, Rasmus Fensholt,
- Abstract summary: We present a methodology to automatically mine species labels from public forest inventory data.
We identify tree instances in aerial imagery and match them with field data with close to zero human involvement.
- Score: 1.264462543503282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Individual tree species labels are particularly hard to acquire due to the expert knowledge needed and the limitations of photointerpretation. Here, we present a methodology to automatically mine species labels from public forest inventory data, using available pretrained tree detection models. We identify tree instances in aerial imagery and match them with field data with close to zero human involvement. We conduct a series of experiments on the resulting dataset, and show a beneficial effect when adding noisy or even unlabeled data points, highlighting a strong potential for large-scale individual species mapping.
Related papers
- BranchPoseNet: Characterizing tree branching with a deep learning-based pose estimation approach [0.0]
This paper presents an automated pipeline for detecting tree whorls in proximally laser scanning data using a pose-estimation deep learning model.
Accurate whorl detection provides valuable insights into tree growth patterns, wood quality, and offers potential for use as a biometric marker to track trees throughout the forestry value chain.
arXiv Detail & Related papers (2024-09-23T07:10:11Z) - Tree semantic segmentation from aerial image time series [24.14827064108217]
We perform semantic segmentation of trees using an aerial dataset image spanning over a year.
We compare models trained on single images versus those trained on time series to assess the impact of tree phenology on segmentation performances.
We leverage the hierarchical structure of tree species taxonomy by incorporating a custom loss function that refines predictions at three levels: species, genus, and higher-level taxa.
arXiv Detail & Related papers (2024-07-18T02:19:57Z) - PureForest: A Large-Scale Aerial Lidar and Aerial Imagery Dataset for Tree Species Classification in Monospecific Forests [0.0]
We present the PureForest dataset: a large-scale, open, multimodal dataset designed for tree species classification.
Most current public Lidar datasets for tree species classification have low diversity as they only span a small area of a few dozen annotated hectares at most.
In contrast, PureForest has 18 tree species grouped into 13 semantic classes, and spans 339 km$2$ across 449 distinct monospecific forests.
arXiv Detail & Related papers (2024-04-18T10:23:10Z) - Lidar-based Norwegian tree species detection using deep learning [0.36651088217486427]
We present a deep learning based tree species classification model utilizing only lidar data.
The model is trained with focal loss over partial weak labels.
Our model achieves a macro-averaged F1 score of 0.70 on an independent validation.
arXiv Detail & Related papers (2023-11-10T14:01:05Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
We present SatBird, a satellite dataset of locations in the USA with labels derived from presence-absence observation data from the citizen science database eBird.
We also provide a dataset in Kenya representing low-data regimes.
We benchmark a set of baselines on our dataset, including SOTA models for remote sensing tasks.
arXiv Detail & Related papers (2023-11-02T02:00:27Z) - Spatial Implicit Neural Representations for Global-Scale Species Mapping [72.92028508757281]
Given a set of locations where a species has been observed, the goal is to build a model to predict whether the species is present or absent at any location.
Traditional methods struggle to take advantage of emerging large-scale crowdsourced datasets.
We use Spatial Implicit Neural Representations (SINRs) to jointly estimate the geographical range of 47k species simultaneously.
arXiv Detail & Related papers (2023-06-05T03:36:01Z) - Tree Detection and Diameter Estimation Based on Deep Learning [0.0]
Tree perception is an essential building block toward autonomous forestry operations.
Deep neural network models trained on our datasets achieve a precision of 90.4% for tree detection.
Results offer promising avenues toward autonomous tree felling operations.
arXiv Detail & Related papers (2022-10-31T15:51:32Z) - Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis [64.4093648042484]
We use a dataset of chest X-ray images with bounding box labels for 13 different classes of anomalies.
We show that it is possible to achieve similar performance to a fully supervised model in terms of mean average precision and accuracy with only 60% of the labeled data.
arXiv Detail & Related papers (2022-06-01T09:20:30Z) - Visualizing hierarchies in scRNA-seq data using a density tree-biased
autoencoder [50.591267188664666]
We propose an approach for identifying a meaningful tree structure from high-dimensional scRNA-seq data.
We then introduce DTAE, a tree-biased autoencoder that emphasizes the tree structure of the data in low dimensional space.
arXiv Detail & Related papers (2021-02-11T08:48:48Z) - Semi-Automatic Data Annotation guided by Feature Space Projection [117.9296191012968]
We present a semi-automatic data annotation approach based on suitable feature space projection and semi-supervised label estimation.
We validate our method on the popular MNIST dataset and on images of human intestinal parasites with and without fecal impurities.
Our results demonstrate the added-value of visual analytics tools that combine complementary abilities of humans and machines for more effective machine learning.
arXiv Detail & Related papers (2020-07-27T17:03:50Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
Time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed.
We propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology.
We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task.
arXiv Detail & Related papers (2020-02-05T21:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.