論文の概要: RAGAR, Your Falsehood RADAR: RAG-Augmented Reasoning for Political Fact-Checking using Multimodal Large Language Models
- arxiv url: http://arxiv.org/abs/2404.12065v1
- Date: Thu, 18 Apr 2024 10:25:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 19:21:31.453609
- Title: RAGAR, Your Falsehood RADAR: RAG-Augmented Reasoning for Political Fact-Checking using Multimodal Large Language Models
- Title(参考訳): RAGAR, your Falsehood RADAR: RAG-Augmented Reasoning for Political Fact-Checking using Multimodal Large Language Models
- Authors: M. Abdul Khaliq, P. Chang, M. Ma, B. Pflugfelder, F. Miletić,
- Abstract要約: マルチモーダルなファクトチェックの信頼性と効率を高めるための革新的なアプローチを導入する。
これらのアプローチは、過去の証拠に基づいて答える必要がある次の質問を推論することで、マルチモーダルなクレームを扱うように設計されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The escalating challenge of misinformation, particularly in the context of political discourse, necessitates advanced solutions for fact-checking. We introduce innovative approaches to enhance the reliability and efficiency of multimodal fact-checking through the integration of Large Language Models (LLMs) with Retrieval-augmented Generation (RAG)- based advanced reasoning techniques. This work proposes two novel methodologies, Chain of RAG (CoRAG) and Tree of RAG (ToRAG). The approaches are designed to handle multimodal claims by reasoning the next questions that need to be answered based on previous evidence. Our approaches improve the accuracy of veracity predictions and the generation of explanations over the traditional fact-checking approach of sub-question generation with chain of thought veracity prediction. By employing multimodal LLMs adept at analyzing both text and images, this research advances the capability of automated systems in identifying and countering misinformation.
- Abstract(参考訳): 誤報のエスカレートする課題、特に政治的言論の文脈では、事実確認のための高度な解決策が必要である。
本稿では,Large Language Models (LLMs) とRetrieval-augmented Generation (RAG) をベースとした高度な推論技術を統合することで,マルチモーダルな事実チェックの信頼性と効率を向上させる革新的な手法を提案する。
本研究では,RAGのチェーン(CoRAG)とRAGのツリー(ToRAG)の2つの新しい手法を提案する。
これらのアプローチは、過去の証拠に基づいて答える必要がある次の質問を推論することで、マルチモーダルなクレームを扱うように設計されている。
提案手法は, 精度予測の精度の向上と, 思考精度予測の連鎖によるサブクエスト生成の従来の事実チェック手法に対する説明の生成を改良する。
本研究は,テキストと画像の両方を分析するのに有効なマルチモーダルLLMを用いることで,誤情報を特定し,対処する自動化システムの能力を向上させる。
関連論文リスト
- Ask in Any Modality: A Comprehensive Survey on Multimodal Retrieval-Augmented Generation [2.549112678136113]
Retrieval-Augmented Generation (RAG) は、外部の動的情報を統合することで問題を緩和する。
クロスモーダルアライメントと推論はMultimodal RAGに固有の課題をもたらし、従来の単調なRAGと区別する。
この調査は、より有能で信頼性の高いAIシステムを開発するための基盤となる。
論文 参考訳(メタデータ) (2025-02-12T22:33:41Z) - Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent [102.31558123570437]
マルチモーダル大規模言語モデル(MLLM)に固有の「ハロシン化」問題を緩和する上で,mRAG(Multimodal Retrieval Augmented Generation)が重要な役割を果たしている。
マルチモーダル検索のための自己適応型計画エージェントOmniSearchを提案する。
論文 参考訳(メタデータ) (2024-11-05T09:27:21Z) - CORAL: Benchmarking Multi-turn Conversational Retrieval-Augmentation Generation [68.81271028921647]
我々は,現実的なマルチターン対話環境におけるRAGシステム評価のためのベンチマークであるCORALを紹介する。
コラルにはウィキペディアから自動的に派生した多様な情報検索会話が含まれている。
対話型RAGの3つの中核的なタスク、すなわち、通過検索、応答生成、および引用ラベリングをサポートする。
論文 参考訳(メタデータ) (2024-10-30T15:06:32Z) - ScopeQA: A Framework for Generating Out-of-Scope Questions for RAG [52.33835101586687]
会話AIエージェントはRetrieval Augmented Generation(RAG)を使用して、ユーザからの問い合わせに対して検証可能なドキュメント地上応答を提供する。
本稿では,多様な境界線外質問を効率よく生成する,ガイド付き幻覚に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-18T16:11:29Z) - LRQ-Fact: LLM-Generated Relevant Questions for Multimodal Fact-Checking [14.647261841209767]
マルチモーダルなファクトチェックのための完全自動フレームワークLRQ-Factを提案する。
マルチモーダルコンテンツを探索するための総合的な質問や回答を生成する。
そして、元のコンテンツと生成された質問と回答の両方を評価し、全体的な妥当性を評価する。
論文 参考訳(メタデータ) (2024-10-06T20:33:22Z) - Retrieval Meets Reasoning: Even High-school Textbook Knowledge Benefits Multimodal Reasoning [49.3242278912771]
RMR(Retrieval Meets Reasoning)と呼ばれる新しいマルチモーダルRAGフレームワークについて紹介する。
RMRフレームワークは、最も関連性の高い問合せ対を特定するために、バイモーダル検索モジュールを使用する。
これは、ベンチマークデータセットのスペクトルにわたって様々なビジョン言語モデルの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2024-05-31T14:23:49Z) - Read and Think: An Efficient Step-wise Multimodal Language Model for Document Understanding and Reasoning [0.0]
既存の文書理解モデルは、1つの単語やフレーズで直接答えを生成する傾向がある。
文書画像の段階的問合せ対を生成するためにMLLM(Multi-modal Large Language Models)を用いる。
次に、生成された高品質なデータを使用して、DocAssistantと呼ばれる、人間化された文書理解と推論モデルをトレーニングします。
論文 参考訳(メタデータ) (2024-02-26T01:17:50Z) - Retrieving-to-Answer: Zero-Shot Video Question Answering with Frozen
Large Language Models [69.59125732317972]
本稿では,ビデオQAのためのシンプルで効果的な検索・回答(R2A)フレームワークを提案する。
R2Aは、まず、事前訓練されたマルチモーダルモデルを用いて、ジェネリックテキストコーパスから意味論的に類似したテキストの集合を検索する。
質問と検索されたテキストの両方で、LSMを直接使用して、望ましい回答を得ることができる。
論文 参考訳(メタデータ) (2023-06-15T20:56:20Z) - MuRAG: Multimodal Retrieval-Augmented Generator for Open Question
Answering over Images and Text [58.655375327681774]
我々は,Multimodal Retrieval-Augmented Transformer (MuRAG)を提案する。
MuRAGは外部の非パラメトリックマルチモーダルメモリにアクセスして言語生成を増強する。
以上の結果から, MuRAGは最先端の精度を達成し, 既存のモデルよりも10~20%精度が高いことがわかった。
論文 参考訳(メタデータ) (2022-10-06T13:58:03Z) - End-to-End Multimodal Fact-Checking and Explanation Generation: A
Challenging Dataset and Models [0.0]
エンドツーエンドのファクトチェックと説明生成を提案する。
目標は、主張の真理性を評価することであり、関連する証拠を取得し、真理性ラベルを予測することである。
この研究を支援するために15,601クレームからなる大規模データセットであるMochegを構築した。
論文 参考訳(メタデータ) (2022-05-25T04:36:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。