Personalized Forgetting Mechanism with Concept-Driven Knowledge Tracing
- URL: http://arxiv.org/abs/2404.12127v2
- Date: Thu, 25 Apr 2024 13:03:44 GMT
- Title: Personalized Forgetting Mechanism with Concept-Driven Knowledge Tracing
- Authors: Shanshan Wang, Ying Hu, Xun Yang, Zhongzhou Zhang, Keyang Wang, Xingyi Zhang,
- Abstract summary: We propose a Concept-driven Personalized Forgetting knowledge tracing model (CPF)
CPF integrates hierarchical relationships between knowledge concepts and incorporates students' personalized cognitive abilities.
Our CPF outperforms current forgetting curve theory based methods in predicting student performance.
- Score: 16.354428270912138
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge Tracing (KT) aims to trace changes in students' knowledge states throughout their entire learning process by analyzing their historical learning data and predicting their future learning performance. Existing forgetting curve theory based knowledge tracing models only consider the general forgetting caused by time intervals, ignoring the individualization of students and the causal relationship of the forgetting process. To address these problems, we propose a Concept-driven Personalized Forgetting knowledge tracing model (CPF) which integrates hierarchical relationships between knowledge concepts and incorporates students' personalized cognitive abilities. First, we integrate the students' personalized capabilities into both the learning and forgetting processes to explicitly distinguish students' individual learning gains and forgetting rates according to their cognitive abilities. Second, we take into account the hierarchical relationships between knowledge points and design a precursor-successor knowledge concept matrix to simulate the causal relationship in the forgetting process, while also integrating the potential impact of forgetting prior knowledge points on subsequent ones. The proposed personalized forgetting mechanism can not only be applied to the learning of specifc knowledge concepts but also the life-long learning process. Extensive experimental results on three public datasets show that our CPF outperforms current forgetting curve theory based methods in predicting student performance, demonstrating CPF can better simulate changes in students' knowledge status through the personalized forgetting mechanism.
Related papers
- KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [75.78948575957081]
Large language models (LLMs) usually rely on retrieval-augmented generation to exploit knowledge materials in an instant manner.
We propose KBAlign, an approach designed for efficient adaptation to downstream tasks involving knowledge bases.
Our method utilizes iterative training with self-annotated data such as Q&A pairs and revision suggestions, enabling the model to grasp the knowledge content efficiently.
arXiv Detail & Related papers (2024-11-22T08:21:03Z) - Leveraging Pedagogical Theories to Understand Student Learning Process with Graph-based Reasonable Knowledge Tracing [11.082908318943248]
We introduce GRKT, a graph-based reasonable knowledge tracing method to address these issues.
We propose a fine-grained and psychological three-stage modeling process as knowledge retrieval, memory strengthening, and knowledge learning/forgetting.
arXiv Detail & Related papers (2024-06-07T10:14:30Z) - Recognizing Unseen Objects via Multimodal Intensive Knowledge Graph
Propagation [68.13453771001522]
We propose a multimodal intensive ZSL framework that matches regions of images with corresponding semantic embeddings.
We conduct extensive experiments and evaluate our model on large-scale real-world data.
arXiv Detail & Related papers (2023-06-14T13:07:48Z) - Selective Knowledge Sharing for Privacy-Preserving Federated
Distillation without A Good Teacher [52.2926020848095]
Federated learning is vulnerable to white-box attacks and struggles to adapt to heterogeneous clients.
This paper proposes a selective knowledge sharing mechanism for FD, termed Selective-FD.
arXiv Detail & Related papers (2023-04-04T12:04:19Z) - A Probabilistic Generative Model for Tracking Multi-Knowledge Concept
Mastery Probability [8.920928164556171]
We propose an inTerpretable pRobAbilistiC gEnerative moDel (TRACED) which can track students' numerous knowledge concepts mastery probabilities over time.
We conduct experiments with four real-world datasets in three knowledge-driven tasks.
The experimental results show that TRACED outperforms existing knowledge tracing methods in predicting students' future performance.
arXiv Detail & Related papers (2023-02-17T03:50:49Z) - When Do Curricula Work in Federated Learning? [56.88941905240137]
We find that curriculum learning largely alleviates non-IIDness.
The more disparate the data distributions across clients the more they benefit from learning.
We propose a novel client selection technique that benefits from the real-world disparity in the clients.
arXiv Detail & Related papers (2022-12-24T11:02:35Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
We design a paradigm for lifelong learning based on meta-learning and associative mechanism of the brain.
It tackles the problem from two aspects: extracting knowledge and memorizing knowledge.
It is theoretically analyzed that the proposed learning paradigm can make the models of different tasks converge to the same optimum.
arXiv Detail & Related papers (2022-08-27T09:27:36Z) - Interpretable Knowledge Tracing: Simple and Efficient Student Modeling
with Causal Relations [21.74631969428855]
Interpretable Knowledge Tracing (IKT) is a simple model that relies on three meaningful latent features.
IKT's prediction of future student performance is made using a Tree-Augmented Naive Bayes (TAN)
IKT has great potential for providing adaptive and personalized instructions with causal reasoning in real-world educational systems.
arXiv Detail & Related papers (2021-12-15T19:05:48Z) - Deep Graph Memory Networks for Forgetting-Robust Knowledge Tracing [5.648636668261282]
We propose a novel knowledge tracing model, namely emphDeep Graph Memory Network (DGMN)
In this model, we incorporate a forget gating mechanism into an attention memory structure in order to capture forgetting behaviours.
This model has the capability of learning relationships between latent concepts from a dynamic latent concept graph.
arXiv Detail & Related papers (2021-08-18T12:04:10Z) - Towards a Universal Continuous Knowledge Base [49.95342223987143]
We propose a method for building a continuous knowledge base that can store knowledge imported from multiple neural networks.
Experiments on text classification show promising results.
We import the knowledge from multiple models to the knowledge base, from which the fused knowledge is exported back to a single model.
arXiv Detail & Related papers (2020-12-25T12:27:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.