論文の概要: Gait Recognition from Highly Compressed Videos
- arxiv url: http://arxiv.org/abs/2404.12183v1
- Date: Thu, 18 Apr 2024 13:46:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 12:21:51.208590
- Title: Gait Recognition from Highly Compressed Videos
- Title(参考訳): 高圧縮映像からの歩行認識
- Authors: Andrei Niculae, Andy Catruna, Adrian Cosma, Daniel Rosner, Emilian Radoi,
- Abstract要約: 一般的な緩和戦略は、頑健性を改善するためにノイズデータ上の微調整ポーズ推定モデルを含む。
本稿では,監視映像の事前処理と改善を目的としたタスク対象のアーティファクト修正モデルを組み込んだ処理パイプラインを提案する。
本実験は歩行解析性能の向上を図り,提案手法の有効性を裏付けるものである。
- 参考スコア(独自算出の注目度): 3.1049440318608568
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Surveillance footage represents a valuable resource and opportunities for conducting gait analysis. However, the typical low quality and high noise levels in such footage can severely impact the accuracy of pose estimation algorithms, which are foundational for reliable gait analysis. Existing literature suggests a direct correlation between the efficacy of pose estimation and the subsequent gait analysis results. A common mitigation strategy involves fine-tuning pose estimation models on noisy data to improve robustness. However, this approach may degrade the downstream model's performance on the original high-quality data, leading to a trade-off that is undesirable in practice. We propose a processing pipeline that incorporates a task-targeted artifact correction model specifically designed to pre-process and enhance surveillance footage before pose estimation. Our artifact correction model is optimized to work alongside a state-of-the-art pose estimation network, HRNet, without requiring repeated fine-tuning of the pose estimation model. Furthermore, we propose a simple and robust method for obtaining low quality videos that are annotated with poses in an automatic manner with the purpose of training the artifact correction model. We systematically evaluate the performance of our artifact correction model against a range of noisy surveillance data and demonstrate that our approach not only achieves improved pose estimation on low-quality surveillance footage, but also preserves the integrity of the pose estimation on high resolution footage. Our experiments show a clear enhancement in gait analysis performance, supporting the viability of the proposed method as a superior alternative to direct fine-tuning strategies. Our contributions pave the way for more reliable gait analysis using surveillance data in real-world applications, regardless of data quality.
- Abstract(参考訳): 監視映像は、歩行分析を行うための貴重な資源と機会を表している。
しかし、このような映像の典型的低品質と高雑音レベルは、信頼性の高い歩行分析の基礎となるポーズ推定アルゴリズムの精度に深刻な影響を及ぼす可能性がある。
既存の文献では、ポーズ推定の有効性とその後の歩行分析結果との直接的な相関が示唆されている。
一般的な緩和戦略は、頑健性を改善するためにノイズデータ上の微調整ポーズ推定モデルを含む。
しかし、このアプローチは、ダウンストリームモデルの性能を元の高品質なデータに低下させ、実際には望ましくないトレードオフをもたらす可能性がある。
本稿では,タスク対象のアーティファクト修正モデルを組み込んだ処理パイプラインを提案する。
我々のアーティファクト補正モデルは,ポーズ推定モデルの微調整を繰り返すことなく,最先端のポーズ推定ネットワークであるHRNetと協調して動作するように最適化されている。
さらに,自動でポーズを付加した低品質映像を,アーティファクト修正モデルの訓練を目的として,簡易かつ堅牢に取得する手法を提案する。
提案手法は,低品位監視映像におけるポーズ推定の改善だけでなく,高品位監視映像におけるポーズ推定の完全性も維持できることを示す。
実験の結果,歩行解析性能が向上し,直接微調整戦略に優れた代替手段として提案手法の有効性が示された。
当社のコントリビューションは、データ品質に関わらず、実世界のアプリケーションにおける監視データを用いたより信頼性の高い歩行分析の道を開いた。
関連論文リスト
- Source-Free Domain-Invariant Performance Prediction [68.39031800809553]
本研究では,不確実性に基づく推定を主軸としたソースフリー手法を提案する。
オブジェクト認識データセットのベンチマーク実験により、既存のソースベースの手法は、限られたソースサンプルの可用性で不足していることが判明した。
提案手法は,現在の最先端のソースフリーおよびソースベース手法よりも優れており,ドメイン不変性能推定の有効性が確認されている。
論文 参考訳(メタデータ) (2024-08-05T03:18:58Z) - Advancing Cross-Domain Generalizability in Face Anti-Spoofing: Insights, Design, and Metrics [10.631157315662607]
本稿では,ゼロショットデータ領域の一般化におけるアンチ・スプーフィング性能の向上に向けた新たな視点を提案する。
従来のフレームワイドのスプーフィング予測に先立ち、ビデオワイドの予測のためにフレームレベルの確率を集約するニュアンス付き計量計算を導入する。
最終モデルは、データセット全体で既存の最先端メソッドよりも優れています。
論文 参考訳(メタデータ) (2024-06-18T04:15:22Z) - Bayesian Exploration of Pre-trained Models for Low-shot Image Classification [14.211305168954594]
本研究はガウス過程に基づくシンプルで効果的な確率的モデルアンサンブルフレームワークを提案する。
平均関数をCLIPとカーネル関数で指定することで,事前知識の統合を実現する。
提案手法は,予測性能に関する競争アンサンブルベースラインを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-03-30T10:25:28Z) - DepthFM: Fast Monocular Depth Estimation with Flow Matching [22.206355073676082]
現在の識別的深さ推定法は、しばしばぼやけた人工物を生成するが、生成的アプローチはノイズ・ツー・ディープ・トランスポートの曲率によるサンプリングが遅い。
本手法は,画像と深度分布間の直接輸送として深度推定をフレーミングすることで,これらの課題に対処する。
提案手法は, 複雑な自然シーンの標準ベンチマークにおいて, サンプリング効率を向上し, 学習に最小限の合成データしか必要とせず, 競争力のあるゼロショット性能を実現する。
論文 参考訳(メタデータ) (2024-03-20T17:51:53Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Learning with Noisy Foundation Models [95.50968225050012]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Progressive residual learning for single image dehazing [57.651704852274825]
物理モデルフリーなデハジングプロセスと, 再構成された散乱モデルに基づくデハジング操作を組み合わせるために, 漸進的残留学習戦略が提案されている。
提案手法は,公開デヘイジングベンチマークにおける最先端手法に対して,複雑なデータに対するモデル解釈性と適応性に優れる。
論文 参考訳(メタデータ) (2021-03-14T16:54:44Z) - Regression or Classification? New Methods to Evaluate No-Reference
Picture and Video Quality Models [45.974399400141685]
粗いレベルでの非参照品質モデルの評価と比較のための2つの新しい手法を提案する。
我々は、最近の画像とビデオの品質データセットに基づいて、人気のあるノン参照品質モデルのベンチマーク実験を行う。
論文 参考訳(メタデータ) (2021-01-30T05:40:14Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
本稿では,フレーム予測と適切な設計による新規で頑健な非教師付きビデオ異常検出手法を提案する。
提案手法は,CUHK Avenueデータセット上で88.3%のフレームレベルAUROCスコアを得る。
論文 参考訳(メタデータ) (2020-11-05T11:34:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。