Gait Recognition from Highly Compressed Videos
- URL: http://arxiv.org/abs/2404.12183v1
- Date: Thu, 18 Apr 2024 13:46:16 GMT
- Title: Gait Recognition from Highly Compressed Videos
- Authors: Andrei Niculae, Andy Catruna, Adrian Cosma, Daniel Rosner, Emilian Radoi,
- Abstract summary: A common mitigation strategy involves fine-tuning pose estimation models on noisy data to improve robustness.
We propose a processing pipeline that incorporates a task-targeted artifact correction model designed to pre-process and enhance surveillance footage.
Our experiments show a clear enhancement in gait analysis performance, supporting the viability of the proposed method.
- Score: 3.1049440318608568
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Surveillance footage represents a valuable resource and opportunities for conducting gait analysis. However, the typical low quality and high noise levels in such footage can severely impact the accuracy of pose estimation algorithms, which are foundational for reliable gait analysis. Existing literature suggests a direct correlation between the efficacy of pose estimation and the subsequent gait analysis results. A common mitigation strategy involves fine-tuning pose estimation models on noisy data to improve robustness. However, this approach may degrade the downstream model's performance on the original high-quality data, leading to a trade-off that is undesirable in practice. We propose a processing pipeline that incorporates a task-targeted artifact correction model specifically designed to pre-process and enhance surveillance footage before pose estimation. Our artifact correction model is optimized to work alongside a state-of-the-art pose estimation network, HRNet, without requiring repeated fine-tuning of the pose estimation model. Furthermore, we propose a simple and robust method for obtaining low quality videos that are annotated with poses in an automatic manner with the purpose of training the artifact correction model. We systematically evaluate the performance of our artifact correction model against a range of noisy surveillance data and demonstrate that our approach not only achieves improved pose estimation on low-quality surveillance footage, but also preserves the integrity of the pose estimation on high resolution footage. Our experiments show a clear enhancement in gait analysis performance, supporting the viability of the proposed method as a superior alternative to direct fine-tuning strategies. Our contributions pave the way for more reliable gait analysis using surveillance data in real-world applications, regardless of data quality.
Related papers
- Source-Free Domain-Invariant Performance Prediction [68.39031800809553]
We propose a source-free approach centred on uncertainty-based estimation, using a generative model for calibration in the absence of source data.
Our experiments on benchmark object recognition datasets reveal that existing source-based methods fall short with limited source sample availability.
Our approach significantly outperforms the current state-of-the-art source-free and source-based methods, affirming its effectiveness in domain-invariant performance estimation.
arXiv Detail & Related papers (2024-08-05T03:18:58Z) - Advancing Cross-Domain Generalizability in Face Anti-Spoofing: Insights, Design, and Metrics [10.631157315662607]
This paper presents a novel perspective for enhancing anti-spoofing performance in zero-shot data domain generalization.
One step forward to the previous frame-wise spoofing prediction, we introduce a nuanced metric calculation that aggregates frame-level probabilities for a video-wise prediction.
Our final model outperforms existing state-of-the-art methods across the datasets.
arXiv Detail & Related papers (2024-06-18T04:15:22Z) - Bayesian Exploration of Pre-trained Models for Low-shot Image Classification [14.211305168954594]
This work proposes a simple and effective probabilistic model ensemble framework based on Gaussian processes.
We achieve the integration of prior knowledge by specifying the mean function with CLIP and the kernel function.
We demonstrate that our method consistently outperforms competitive ensemble baselines regarding predictive performance.
arXiv Detail & Related papers (2024-03-30T10:25:28Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Predicting Out-of-Distribution Error with Confidence Optimal Transport [17.564313038169434]
We present a simple yet effective method to predict a model's performance on an unknown distribution without any addition annotation.
We show that our method, Confidence Optimal Transport (COT), provides robust estimates of a model's performance on a target domain.
Despite its simplicity, our method achieves state-of-the-art results on three benchmark datasets and outperforms existing methods by a large margin.
arXiv Detail & Related papers (2023-02-10T02:27:13Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Progressive residual learning for single image dehazing [57.651704852274825]
A progressive residual learning strategy has been proposed to combine the physical model-free dehazing process with reformulated scattering model-based dehazing operations.
The proposed method performs favorably against the state-of-the-art methods on public dehazing benchmarks with better model interpretability and adaptivity for complex data.
arXiv Detail & Related papers (2021-03-14T16:54:44Z) - Regression or Classification? New Methods to Evaluate No-Reference
Picture and Video Quality Models [45.974399400141685]
We propose two new methods to evaluate and compare no-reference quality models at coarser levels.
We conduct a benchmark experiment of popular no-reference quality models on recent in-the-wild picture and video quality datasets.
arXiv Detail & Related papers (2021-01-30T05:40:14Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
We propose a novel and robust unsupervised video anomaly detection method by frame prediction with proper design.
Our proposed method obtains the frame-level AUROC score of 88.3% on the CUHK Avenue dataset.
arXiv Detail & Related papers (2020-11-05T11:34:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.