論文の概要: GraFIQs: Face Image Quality Assessment Using Gradient Magnitudes
- arxiv url: http://arxiv.org/abs/2404.12203v1
- Date: Thu, 18 Apr 2024 14:07:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 12:21:51.190409
- Title: GraFIQs: Face Image Quality Assessment Using Gradient Magnitudes
- Title(参考訳): GraFIQs: グラディエントマグニチュードを用いた顔画像品質評価
- Authors: Jan Niklas Kolf, Naser Damer, Fadi Boutros,
- Abstract要約: 顔画像品質評価(FIQA)は、顔認識(FR)システムにおける顔画像の有用性を推定する。
本研究では,事前学習したFRモデルの重量変化を検査し,顔画像の品質を評価する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 9.170455788675836
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Face Image Quality Assessment (FIQA) estimates the utility of face images for automated face recognition (FR) systems. We propose in this work a novel approach to assess the quality of face images based on inspecting the required changes in the pre-trained FR model weights to minimize differences between testing samples and the distribution of the FR training dataset. To achieve that, we propose quantifying the discrepancy in Batch Normalization statistics (BNS), including mean and variance, between those recorded during FR training and those obtained by processing testing samples through the pretrained FR model. We then generate gradient magnitudes of pretrained FR weights by backpropagating the BNS through the pretrained model. The cumulative absolute sum of these gradient magnitudes serves as the FIQ for our approach. Through comprehensive experimentation, we demonstrate the effectiveness of our training-free and quality labeling-free approach, achieving competitive performance to recent state-of-theart FIQA approaches without relying on quality labeling, the need to train regression networks, specialized architectures, or designing and optimizing specific loss functions.
- Abstract(参考訳): 顔画像品質評価(FIQA)は、顔認識(FR)システムにおける顔画像の有用性を推定する。
本研究では,テストサンプルとFRトレーニングデータセットの分布の差を最小限に抑えるために,事前学習したFRモデルの重量変化を検査し,顔画像の品質を評価する新しい手法を提案する。
そこで本研究では, FRトレーニング中に記録した値と, 事前訓練したFRモデルを用いて試料を処理した値との平均値と分散値との差を定量化する手法を提案する。
次に、事前学習モデルを用いてBNSを逆伝播させることにより、事前学習されたFR重量の勾配等級を生成する。
これらの勾配等級の累積絶対和は、我々のアプローチのFIQとなる。
総合的な実験を通じて、トレーニング不要で品質の高いラベリングフリーアプローチの有効性を実証し、最近の最先端のFIQAアプローチに対して、品質ラベリングに頼ることなく、回帰ネットワークのトレーニング、特殊アーキテクチャ、特定の損失関数の設計と最適化を行う。
関連論文リスト
- Opinion-Unaware Blind Image Quality Assessment using Multi-Scale Deep Feature Statistics [54.08757792080732]
我々は,事前学習された視覚モデルからの深い特徴を統計的解析モデルと統合して,意見認識のないBIQA(OU-BIQA)を実現することを提案する。
提案モデルは,最先端のBIQAモデルと比較して,人間の視覚的知覚との整合性に優れる。
論文 参考訳(メタデータ) (2024-05-29T06:09:34Z) - Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-Reference Point Cloud Quality Assessment (NR-PCQA) は、歪んだ点雲の知覚的品質を、参照なしで自動的に評価することを目的としている。
我々は,PCQA(CoPA)に適した新しいコントラスト付き事前学習フレームワークを提案する。
提案手法は,最新のPCQA手法よりも高い性能を示す。
論文 参考訳(メタデータ) (2024-03-15T07:16:07Z) - IG-FIQA: Improving Face Image Quality Assessment through Intra-class
Variance Guidance robust to Inaccurate Pseudo-Labels [13.567049202308981]
IG-FIQAは、FIQAトレーニングをガイドする新しいアプローチであり、これらの授業の有害な影響を軽減するために重みパラメータを導入する。
提案手法であるIG-FIQAは,様々なベンチマーク・データセットを用いて,新しいSOTA(State-of-the-art)性能を実現した。
論文 参考訳(メタデータ) (2024-03-13T05:15:43Z) - Test Time Adaptation for Blind Image Quality Assessment [20.50795362928567]
本報告では, ブラインドIQAにおけるTTAを実現するために, バッチとサンプルレベルに2つの新しい品質関連補助タスクを導入する。
実験の結果,テスト分布から少量の画像を使用しても,性能の大幅な向上が期待できることがわかった。
論文 参考訳(メタデータ) (2023-07-27T09:43:06Z) - A Quality Aware Sample-to-Sample Comparison for Face Recognition [13.96448286983864]
この研究は、サンプルレベルで品質を意識した学習プロセスを分類訓練パラダイム(QAFace)に統合する。
本手法は,トレーニングデータセットの認識可能な低品質サンプルに適応的に注目する。
論文 参考訳(メタデータ) (2023-06-06T20:28:04Z) - DifFIQA: Face Image Quality Assessment Using Denoising Diffusion
Probabilistic Models [1.217503190366097]
顔画像品質評価(FIQA)技術は、これらの性能劣化を軽減することを目的としている。
拡散確率モデル(DDPM)に基づく強力な新しいFIQA手法DifFIQAを提案する。
拡散に基づく摂動は計算コストが高いため、DifFIQA(R)と呼ばれる回帰ベースの品質予測器にDifFIQAで符号化された知識を蒸留する。
論文 参考訳(メタデータ) (2023-05-09T21:03:13Z) - Conformer and Blind Noisy Students for Improved Image Quality Assessment [80.57006406834466]
知覚品質評価(IQA)のための学習ベースアプローチは、通常、知覚品質を正確に測定するために歪んだ画像と参照画像の両方を必要とする。
本研究では,変換器を用いた全参照IQAモデルの性能について検討する。
また,全教師モデルから盲人学生モデルへの半教師付き知識蒸留に基づくIQAの手法を提案する。
論文 参考訳(メタデータ) (2022-04-27T10:21:08Z) - CR-FIQA: Face Image Quality Assessment by Learning Sample Relative
Classifiability [2.3624125155742055]
本稿では,学習過程における内部ネットワーク観測を学習する新しい学習パラダイムを提案する。
提案するCR-FIQAは,このパラダイムを用いて,サンプルの顔画像品質を,その相対的分類可能性の予測により推定する。
本研究では, 最先端(SOTA) FIQAアルゴリズムよりもCR-FIQAの方が優れていることを示す。
論文 参考訳(メタデータ) (2021-12-13T12:18:43Z) - Learning Transformer Features for Image Quality Assessment [53.51379676690971]
本稿では,CNNバックボーンとトランスフォーマーエンコーダを用いて特徴抽出を行うIQAフレームワークを提案する。
提案するフレームワークはFRモードとNRモードの両方と互換性があり、共同トレーニング方式が可能である。
論文 参考訳(メタデータ) (2021-12-01T13:23:00Z) - Task-Specific Normalization for Continual Learning of Blind Image
Quality Models [105.03239956378465]
視覚的画像品質評価(BIQA)のための簡易かつ効果的な連続学習法を提案する。
このアプローチの重要なステップは、トレーニング済みのディープニューラルネットワーク(DNN)のすべての畳み込みフィルタを凍結して、安定性を明示的に保証することです。
我々は、各新しいIQAデータセット(タスク)に予測ヘッドを割り当て、対応する正規化パラメータをロードして品質スコアを生成する。
最終的な品質推定は、軽量な$K$-meansゲーティング機構で、すべての頭からの予測の重み付け総和によって計算される。
論文 参考訳(メタデータ) (2021-07-28T15:21:01Z) - Uncertainty-Aware Blind Image Quality Assessment in the Laboratory and
Wild [98.48284827503409]
我々は,テキスト化BIQAモデルを開発し,それを合成的および現実的歪みの両方で訓練するアプローチを提案する。
我々は、多数の画像ペアに対してBIQAのためのディープニューラルネットワークを最適化するために、忠実度損失を用いる。
6つのIQAデータベースの実験は、実験室と野生動物における画像品質を盲目的に評価する学習手法の可能性を示唆している。
論文 参考訳(メタデータ) (2020-05-28T13:35:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。