論文の概要: A Quadrature Approach for General-Purpose Batch Bayesian Optimization via Probabilistic Lifting
- arxiv url: http://arxiv.org/abs/2404.12219v1
- Date: Thu, 18 Apr 2024 14:30:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 19:02:00.883361
- Title: A Quadrature Approach for General-Purpose Batch Bayesian Optimization via Probabilistic Lifting
- Title(参考訳): 確率リフティングによる汎用バッチベイズ最適化のための四分法アプローチ
- Authors: Masaki Adachi, Satoshi Hayakawa, Martin Jørgensen, Saad Hamid, Harald Oberhauser, Michael A. Osborne,
- Abstract要約: GPyTorch/BoTorchをベースとしたPythonライブラリであるSOBERと呼ばれるカーネル二次構造を用いた確率的昇降によるバッチベイズ最適化のための汎用的でモジュール化されたフレームワークを提案する。
1) 統一されたアプローチ下での下流タスクの冗長性。
2) ドメインに依存しないサンプリング(例えば、離散変数と混合変数、非ユークリッド空間)を提供する、取得関数の勾配を必要としない勾配のないサンプリング器。
- 参考スコア(独自算出の注目度): 29.476428264123644
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Parallelisation in Bayesian optimisation is a common strategy but faces several challenges: the need for flexibility in acquisition functions and kernel choices, flexibility dealing with discrete and continuous variables simultaneously, model misspecification, and lastly fast massive parallelisation. To address these challenges, we introduce a versatile and modular framework for batch Bayesian optimisation via probabilistic lifting with kernel quadrature, called SOBER, which we present as a Python library based on GPyTorch/BoTorch. Our framework offers the following unique benefits: (1) Versatility in downstream tasks under a unified approach. (2) A gradient-free sampler, which does not require the gradient of acquisition functions, offering domain-agnostic sampling (e.g., discrete and mixed variables, non-Euclidean space). (3) Flexibility in domain prior distribution. (4) Adaptive batch size (autonomous determination of the optimal batch size). (5) Robustness against a misspecified reproducing kernel Hilbert space. (6) Natural stopping criterion.
- Abstract(参考訳): ベイズ最適化における並列化は共通の戦略であるが、取得関数とカーネルの選択における柔軟性の必要性、離散変数と連続変数を同時に扱う柔軟性、モデルの誤特定、そして最後に高速な大規模並列化など、いくつかの課題に直面している。
これらの課題に対処するため,我々は,GPyTorch/BoTorchをベースとしたPythonライブラリであるSOBER(英語版)と呼ばれるカーネル二次化による確率的昇降によるバッチベイズ最適化のための汎用的でモジュール化されたフレームワークを紹介した。
1) 統一されたアプローチ下での下流タスクの冗長性。
2) 取得関数の勾配を必要としない勾配のないサンプリング器は、ドメインに依存しないサンプリング(例えば、離散変数と混合変数、非ユークリッド空間)を提供する。
(3)ドメイン事前分布の柔軟性。
(4)適応バッチサイズ(最適バッチサイズの自動決定)。
(5) ヒルベルト空間の不特定再生核に対するロバスト性。
(6)自然停止基準
関連論文リスト
- Simulation Based Bayesian Optimization [0.6526824510982799]
本稿では,獲得関数を最適化するための新しいアプローチとして,シミュレーションベースベイズ最適化(SBBO)を提案する。
SBBOは、離散変数を持つ空間に適した代理モデルを使用することができる。
代理モデルの様々な選択を用いたSBBO法の有効性を実証的に実証した。
論文 参考訳(メタデータ) (2024-01-19T16:56:11Z) - Pseudo-Bayesian Optimization [7.556071491014536]
ブラックボックス最適化の収束を保証するために最小限の要件を課す公理的枠組みについて検討する。
我々は、単純な局所回帰と、不確実性を定量化するために適切な「ランダム化事前」構造を用いることが、収束を保証するだけでなく、常に最先端のベンチマークよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-15T07:55:28Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
本稿では,高信頼領域を適応的にフィルタするBALLETというフレームワークを提案する。
理論的には、BALLETは探索空間を効率的に縮小することができ、標準BOよりも厳密な後悔を示すことができる。
論文 参考訳(メタデータ) (2023-07-25T09:45:47Z) - Bayesian Kernelized Tensor Factorization as Surrogate for Bayesian
Optimization [13.896697187967545]
カーネル最適化(BO)は主にガウス過程(GP)をキーサロゲートモデルとして用いている。
本稿では,BOにおける新しい代理モデルとしてベイズ因子化(BKTF)を提案する。
BKTFは、不確実量化を伴う複素関数を特徴づけるための柔軟で効果的なアプローチを提供する。
論文 参考訳(メタデータ) (2023-02-28T12:00:21Z) - SOBER: Highly Parallel Bayesian Optimization and Bayesian Quadrature
over Discrete and Mixed Spaces [6.573393706476156]
離散および混合空間上の任意のカーネルを持つ新しい大域最適化法を提案する。
バッチ二次法は、搾取的ベイズ二次法の利点のバランスをとることによって、両方の問題を効率的に解くことができる。
我々は、SOBERが競合するベースライン効率のバッチとスケーラブルな実世界のタスクより優れていることを示す。
論文 参考訳(メタデータ) (2023-01-27T16:36:33Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
目的と決定論的等式制約による非線形最適化問題を解くために,逐次2次プログラミングアルゴリズム(TR-StoSQP)を提案する。
アルゴリズムは信頼領域半径を適応的に選択し、既存の直線探索StoSQP方式と比較して不確定なヘッセン行列を利用することができる。
論文 参考訳(メタデータ) (2022-11-29T05:52:17Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
本稿では,探索空間の活用と探索のバランスをとるための新しいベイズ代理モデルを提案する。
拡張性のある関数サンプリングを実現するため、GPモデル毎にランダムな特徴ベースのカーネル近似を利用する。
提案した EGP-TS を大域的最適に収束させるため,ベイズ的後悔の概念に基づいて解析を行う。
論文 参考訳(メタデータ) (2022-05-27T16:43:10Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
二次目的関数を最大化するスティーフェル多様体上の行列を求める非最適化問題に対処する。
そこで本研究では,支配的固有空間行列を求めるための,単純かつ効果的なスパーシティプロモーティングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-30T19:17:35Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
サーロゲートモデルは、シミュレータ評価の回数を減らすために、可能性のない推論に成功している。
本稿では,より不規則な対象分布を扱えるディープガウス過程(DGP)サロゲートモデルを提案する。
本実験は,DGPがマルチモーダル分布を持つ目的関数上でGPよりも優れ,単調な場合と同等の性能を維持できることを示す。
論文 参考訳(メタデータ) (2020-06-18T14:24:05Z) - Bayesian Quantile and Expectile Optimisation [3.3878745408530833]
本研究では,非定常雑音設定に適したベイズ量子と予測回帰の新しい変分モデルを提案する。
我々の戦略は、観測の複製やノイズのパラメトリック形式を仮定することなく、量子と予測を直接最適化することができる。
実験セクションで示されるように、提案手法は異端性非ガウス的ケースにおいて、明らかに芸術の状態を上回ります。
論文 参考訳(メタデータ) (2020-01-12T20:51:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。