論文の概要: DF-DM: A foundational process model for multimodal data fusion in the artificial intelligence era
- arxiv url: http://arxiv.org/abs/2404.12278v2
- Date: Sun, 2 Jun 2024 16:51:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 15:18:10.868929
- Title: DF-DM: A foundational process model for multimodal data fusion in the artificial intelligence era
- Title(参考訳): DF-DM:人工知能時代のマルチモーダルデータ融合の基礎的プロセスモデル
- Authors: David Restrepo, Chenwei Wu, Constanza Vásquez-Venegas, Luis Filipe Nakayama, Leo Anthony Celi, Diego M López,
- Abstract要約: 本稿では,データマイニングのためのマルチモーダルデータフュージョンの新しいプロセスモデルを提案する。
我々のモデルは、効率と信頼性を改善しつつ、計算コスト、複雑さ、バイアスを減らすことを目的としている。
本研究は,糖尿病網膜症における網膜画像と患者のメタデータを用いた予測,衛星画像を用いた家庭内暴力予測,インターネット,国勢調査データ,放射線画像と臨床ノートによる臨床像と人口動態の同定という3つのユースケースを通じて有効性を示す。
- 参考スコア(独自算出の注目度): 3.2549142515720044
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the big data era, integrating diverse data modalities poses significant challenges, particularly in complex fields like healthcare. This paper introduces a new process model for multimodal Data Fusion for Data Mining, integrating embeddings and the Cross-Industry Standard Process for Data Mining with the existing Data Fusion Information Group model. Our model aims to decrease computational costs, complexity, and bias while improving efficiency and reliability. We also propose "disentangled dense fusion", a novel embedding fusion method designed to optimize mutual information and facilitate dense inter-modality feature interaction, thereby minimizing redundant information. We demonstrate the model's efficacy through three use cases: predicting diabetic retinopathy using retinal images and patient metadata, domestic violence prediction employing satellite imagery, internet, and census data, and identifying clinical and demographic features from radiography images and clinical notes. The model achieved a Macro F1 score of 0.92 in diabetic retinopathy prediction, an R-squared of 0.854 and sMAPE of 24.868 in domestic violence prediction, and a macro AUC of 0.92 and 0.99 for disease prediction and sex classification, respectively, in radiological analysis. These results underscore the Data Fusion for Data Mining model's potential to significantly impact multimodal data processing, promoting its adoption in diverse, resource-constrained settings.
- Abstract(参考訳): ビッグデータ時代において、多様なデータモダリティを統合することは、特に医療のような複雑な分野において、大きな課題となる。
本稿では、データマイニングのためのマルチモーダルデータフュージョンの新しいプロセスモデルを導入し、埋め込みとデータマイニングのためのクロス産業標準プロセスと既存のデータフュージョン情報グループモデルを統合する。
我々のモデルは、効率と信頼性を改善しつつ、計算コスト、複雑さ、バイアスを減らすことを目的としている。
また、相互情報を最適化し、密接なモーダリティ間特徴相互作用を容易にし、冗長情報を最小化するために設計された新しい埋め込み融合法である「遠方密度融合」を提案する。
本モデルの有効性は,網膜画像と患者のメタデータを用いた糖尿病網膜症予測,衛星画像を用いた家庭内暴力予測,インターネット,国勢調査データ,および放射線画像および臨床ノートから臨床および人口統計学的特徴を同定することにより示す。
糖尿病網膜症予測ではマクロF1スコアが0.92、家庭内暴力予測では0.854、sMAPEが24.868、疾患予測では0.92、性分類では0.99のマクロAUCがそれぞれ達成された。
これらの結果は、マルチモーダルデータ処理に大きな影響を与えるData Fusion for Data Miningモデルの可能性を強調し、多様なリソース制約のある設定で採用を促進する。
関連論文リスト
- Multi-OCT-SelfNet: Integrating Self-Supervised Learning with Multi-Source Data Fusion for Enhanced Multi-Class Retinal Disease Classification [2.5091334993691206]
網膜疾患診断のための堅牢なディープラーニングモデルの開発には、トレーニングのためのかなりのデータセットが必要である。
より小さなデータセットで効果的に一般化する能力は、依然として永続的な課題である。
さまざまなデータソースを組み合わせて、パフォーマンスを改善し、新しいデータに一般化しています。
論文 参考訳(メタデータ) (2024-09-17T17:22:35Z) - Towards Precision Healthcare: Robust Fusion of Time Series and Image Data [8.579651833717763]
本稿では,データの種類毎に2つのエンコーダを用いて,視覚情報と時間情報の両方において複雑なパターンをモデル化する手法を提案する。
また、不均衡なデータセットに対処し、不確実性損失関数を使用し、改善した結果を得る。
本手法は,臨床応用におけるマルチモーダルディープラーニングの改善に有効であることを示す。
論文 参考訳(メタデータ) (2024-05-24T11:18:13Z) - FORESEE: Multimodal and Multi-view Representation Learning for Robust Prediction of Cancer Survival [3.4686401890974197]
マルチモーダル情報のマイニングにより患者生存を確実に予測する新しいエンドツーエンドフレームワークFOESEEを提案する。
クロスフュージョントランスフォーマーは、細胞レベル、組織レベル、腫瘍の不均一度レベルの特徴を効果的に利用し、予後を相関させる。
ハイブリットアテンションエンコーダ(HAE)は、コンテキストアテンションモジュールを用いて、コンテキスト関係の特徴を取得する。
また、モダリティ内の損失情報を再構成する非対称マスク型3重マスク型オートエンコーダを提案する。
論文 参考訳(メタデータ) (2024-05-13T12:39:08Z) - DrFuse: Learning Disentangled Representation for Clinical Multi-Modal
Fusion with Missing Modality and Modal Inconsistency [18.291267748113142]
そこで本研究では,DrFuseを効果的に多モード核融合を実現するために提案する。
モダリティに共通する特徴と各モダリティに特有の特徴を分離することで、モダリティの欠如に対処する。
実世界の大規模データセットMIMIC-IVとMIMIC-CXRを用いて提案手法を検証する。
論文 参考訳(メタデータ) (2024-03-10T12:41:34Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - MaxCorrMGNN: A Multi-Graph Neural Network Framework for Generalized
Multimodal Fusion of Medical Data for Outcome Prediction [3.2889220522843625]
我々はMaxCorr MGNNと呼ばれる革新的な融合手法を開発し、患者内および患者間の非線形モダリティ相関をモデル化する。
次に,多層グラフにおけるタスクインフォームド推論のための汎用多層グラフニューラルネットワーク(MGNN)を初めて設計する。
我々は,本モデルを結核データセットにおける結果予測タスクとして評価し,最先端のニューラルネットワーク,グラフベース,従来の融合技術より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-07-13T23:52:41Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。