When Medical Imaging Met Self-Attention: A Love Story That Didn't Quite Work Out
- URL: http://arxiv.org/abs/2404.12295v1
- Date: Thu, 18 Apr 2024 16:18:41 GMT
- Title: When Medical Imaging Met Self-Attention: A Love Story That Didn't Quite Work Out
- Authors: Tristan Piater, Niklas Penzel, Gideon Stein, Joachim Denzler,
- Abstract summary: We extend two widely adopted convolutional architectures with different self-attention variants on two different medical datasets.
We observe no significant improvement in balanced accuracy over fully convolutional models.
We also find that important features, such as dermoscopic structures in skin lesion images, are still not learned by employing self-attention.
- Score: 8.113092414596679
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A substantial body of research has focused on developing systems that assist medical professionals during labor-intensive early screening processes, many based on convolutional deep-learning architectures. Recently, multiple studies explored the application of so-called self-attention mechanisms in the vision domain. These studies often report empirical improvements over fully convolutional approaches on various datasets and tasks. To evaluate this trend for medical imaging, we extend two widely adopted convolutional architectures with different self-attention variants on two different medical datasets. With this, we aim to specifically evaluate the possible advantages of additional self-attention. We compare our models with similarly sized convolutional and attention-based baselines and evaluate performance gains statistically. Additionally, we investigate how including such layers changes the features learned by these models during the training. Following a hyperparameter search, and contrary to our expectations, we observe no significant improvement in balanced accuracy over fully convolutional models. We also find that important features, such as dermoscopic structures in skin lesion images, are still not learned by employing self-attention. Finally, analyzing local explanations, we confirm biased feature usage. We conclude that merely incorporating attention is insufficient to surpass the performance of existing fully convolutional methods.
Related papers
- LoRKD: Low-Rank Knowledge Decomposition for Medical Foundation Models [59.961172635689664]
"Knowledge Decomposition" aims to improve the performance on specific medical tasks.
We propose a novel framework named Low-Rank Knowledge Decomposition (LoRKD)
LoRKD explicitly separates gradients from different tasks by incorporating low-rank expert modules and efficient knowledge separation convolution.
arXiv Detail & Related papers (2024-09-29T03:56:21Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Lessons Learned from EXMOS User Studies: A Technical Report Summarizing
Key Takeaways from User Studies Conducted to Evaluate The EXMOS Platform [5.132827811038276]
Two user studies aimed at illuminating the influence of different explanation types on three key dimensions: trust, understandability, and model improvement.
Results show that global model-centric explanations alone are insufficient for effectively guiding users during the intricate process of data configuration.
We present essential implications for developing interactive machine-learning systems driven by explanations.
arXiv Detail & Related papers (2023-10-03T14:04:45Z) - Exploiting Causality Signals in Medical Images: A Pilot Study with
Empirical Results [1.2400966570867322]
We present a novel technique to discover and exploit weak causal signals directly from images via neural networks for classification purposes.
This way, we model how the presence of a feature in one part of the image affects the appearance of another feature in a different part of the image.
Our method consists of a convolutional neural network backbone and a causality-factors extractor module, which computes weights to enhance each feature map according to its causal influence in the scene.
arXiv Detail & Related papers (2023-09-19T08:00:26Z) - Learning Through Guidance: Knowledge Distillation for Endoscopic Image
Classification [40.366659911178964]
Endoscopy plays a major role in identifying any underlying abnormalities within the gastrointestinal (GI) tract.
Deep learning, specifically Convolution Neural Networks (CNNs) which are designed to perform automatic feature learning without any prior feature engineering, has recently reported great benefits for GI endoscopy image analysis.
We investigate three KD-based learning frameworks, response-based, feature-based, and relation-based mechanisms, and introduce a novel multi-head attention-based feature fusion mechanism to support relation-based learning.
arXiv Detail & Related papers (2023-08-17T02:02:11Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
In this paper, we collect a series of MedISeg tricks for different model implementation phases.
We experimentally explore the effectiveness of these tricks on consistent baselines.
We also open-sourced a strong MedISeg repository, where each component has the advantage of plug-and-play.
arXiv Detail & Related papers (2022-09-21T12:30:05Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - Assessing the Impact of Attention and Self-Attention Mechanisms on the
Classification of Skin Lesions [0.0]
We focus on two forms of attention mechanisms: attention modules and self-attention.
Attention modules are used to reweight the features of each layer input tensor.
Self-Attention, originally proposed in the area of Natural Language Processing makes it possible to relate all the items in an input sequence.
arXiv Detail & Related papers (2021-12-23T18:02:48Z) - Learning Representations with Contrastive Self-Supervised Learning for
Histopathology Applications [8.69535649683089]
We show how contrastive self-supervised learning can reduce the annotation effort within digital pathology.
Our results pave the way for realizing the full potential of self-supervised learning for histopathology applications.
arXiv Detail & Related papers (2021-12-10T16:08:57Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.