Exploiting Causality Signals in Medical Images: A Pilot Study with
Empirical Results
- URL: http://arxiv.org/abs/2309.10399v3
- Date: Tue, 2 Jan 2024 14:24:42 GMT
- Title: Exploiting Causality Signals in Medical Images: A Pilot Study with
Empirical Results
- Authors: Gianluca Carloni, Sara Colantonio
- Abstract summary: We present a novel technique to discover and exploit weak causal signals directly from images via neural networks for classification purposes.
This way, we model how the presence of a feature in one part of the image affects the appearance of another feature in a different part of the image.
Our method consists of a convolutional neural network backbone and a causality-factors extractor module, which computes weights to enhance each feature map according to its causal influence in the scene.
- Score: 1.2400966570867322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel technique to discover and exploit weak causal signals
directly from images via neural networks for classification purposes. This way,
we model how the presence of a feature in one part of the image affects the
appearance of another feature in a different part of the image. Our method
consists of a convolutional neural network backbone and a causality-factors
extractor module, which computes weights to enhance each feature map according
to its causal influence in the scene. We develop different architecture
variants and empirically evaluate all the models on two public datasets of
prostate MRI images and breast histopathology slides for cancer diagnosis. We
study the effectiveness of our module both in fully-supervised and few-shot
learning, we assess its addition to existing attention-based solutions, we
conduct ablation studies, and investigate the explainability of our models via
class activation maps. Our findings show that our lightweight block extracts
meaningful information and improves the overall classification, together with
producing more robust predictions that focus on relevant parts of the image.
That is crucial in medical imaging, where accurate and reliable classifications
are essential for effective diagnosis and treatment planning.
Related papers
- Disease Classification and Impact of Pretrained Deep Convolution Neural Networks on Diverse Medical Imaging Datasets across Imaging Modalities [0.0]
This paper investigates the intricacies of using pretrained deep convolutional neural networks with transfer learning across diverse medical imaging datasets.
It shows that the use of pretrained models as fixed feature extractors yields poor performance irrespective of the datasets.
It is also found that deeper and more complex architectures did not necessarily result in the best performance.
arXiv Detail & Related papers (2024-08-30T04:51:19Z) - Causality-Driven One-Shot Learning for Prostate Cancer Grading from MRI [1.049712834719005]
We present a novel method to automatically classify medical images that learns and leverages weak causal signals in the image.
Our framework consists of a convolutional neural network backbone and a causality-extractor module.
Our findings show that causal relationships among features play a crucial role in enhancing the model's ability to discern relevant information.
arXiv Detail & Related papers (2023-09-19T16:08:33Z) - Introducing Shape Prior Module in Diffusion Model for Medical Image
Segmentation [7.7545714516743045]
We propose an end-to-end framework called VerseDiff-UNet, which leverages the denoising diffusion probabilistic model (DDPM)
Our approach integrates the diffusion model into a standard U-shaped architecture.
We evaluate our method on a single dataset of spine images acquired through X-ray imaging.
arXiv Detail & Related papers (2023-09-12T03:05:00Z) - Convolutional neural network based on sparse graph attention mechanism
for MRI super-resolution [0.34410212782758043]
Medical image super-resolution (SR) reconstruction using deep learning techniques can enhance lesion analysis and assist doctors in improving diagnostic efficiency and accuracy.
Existing deep learning-based SR methods rely on convolutional neural networks (CNNs), which inherently limit the expressive capabilities of these models.
We propose an A-network that utilizes multiple convolution operator feature extraction modules (MCO) for extracting image features.
arXiv Detail & Related papers (2023-05-29T06:14:22Z) - Controllable Mind Visual Diffusion Model [58.83896307930354]
Brain signal visualization has emerged as an active research area, serving as a critical interface between the human visual system and computer vision models.
We propose a novel approach, referred to as Controllable Mind Visual Model Diffusion (CMVDM)
CMVDM extracts semantic and silhouette information from fMRI data using attribute alignment and assistant networks.
We then leverage a control model to fully exploit the extracted information for image synthesis, resulting in generated images that closely resemble the visual stimuli in terms of semantics and silhouette.
arXiv Detail & Related papers (2023-05-17T11:36:40Z) - Pixel-Level Explanation of Multiple Instance Learning Models in
Biomedical Single Cell Images [52.527733226555206]
We investigate the use of four attribution methods to explain a multiple instance learning models.
We study two datasets of acute myeloid leukemia with over 100 000 single cell images.
We compare attribution maps with the annotations of a medical expert to see how the model's decision-making differs from the human standard.
arXiv Detail & Related papers (2023-03-15T14:00:11Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - Feature visualization for convolutional neural network models trained on
neuroimaging data [0.0]
We show for the first time results using feature visualization of convolutional neural networks (CNNs)
We have trained CNNs for different tasks including sex classification and artificial lesion classification based on structural magnetic resonance imaging (MRI) data.
The resulting images reveal the learned concepts of the artificial lesions, including their shapes, but remain hard to interpret for abstract features in the sex classification task.
arXiv Detail & Related papers (2022-03-24T15:24:38Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.