Learning the Domain Specific Inverse NUFFT for Accelerated Spiral MRI using Diffusion Models
- URL: http://arxiv.org/abs/2404.12361v2
- Date: Fri, 10 May 2024 18:47:01 GMT
- Title: Learning the Domain Specific Inverse NUFFT for Accelerated Spiral MRI using Diffusion Models
- Authors: Trevor J. Chan, Chamith S. Rajapakse,
- Abstract summary: We create a generative diffusion model-based reconstruction algorithm for multi-coil highly undersampled spiral MRI.
We show high quality (structural similarity > 0.87) in reconstructed images with ultrafast scan times (0.02 seconds for a 2D image).
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning methods for accelerated MRI achieve state-of-the-art results but largely ignore additional speedups possible with noncartesian sampling trajectories. To address this gap, we created a generative diffusion model-based reconstruction algorithm for multi-coil highly undersampled spiral MRI. This model uses conditioning during training as well as frequency-based guidance to ensure consistency between images and measurements. Evaluated on retrospective data, we show high quality (structural similarity > 0.87) in reconstructed images with ultrafast scan times (0.02 seconds for a 2D image). We use this algorithm to identify a set of optimal variable-density spiral trajectories and show large improvements in image quality compared to conventional reconstruction using the non-uniform fast Fourier transform. By combining efficient spiral sampling trajectories, multicoil imaging, and deep learning reconstruction, these methods could enable the extremely high acceleration factors needed for real-time 3D imaging.
Related papers
- TEAM PILOT -- Learned Feasible Extendable Set of Dynamic MRI Acquisition Trajectories [2.7719338074999547]
We introduce a novel deep-compressed sensing approach that uses 3D window attention and flexible, temporally extendable acquisition trajectories.
Our method significantly reduces both training and inference times compared to existing approaches.
Tests with real data show that our approach outperforms current state-of-theart techniques.
arXiv Detail & Related papers (2024-09-19T13:45:13Z) - Attention-aware non-rigid image registration for accelerated MR imaging [10.47044784972188]
We introduce an attention-aware deep learning-based framework that can perform non-rigid pairwise registration for fully sampled and accelerated MRI.
We extract local visual representations to build similarity maps between the registered image pairs at multiple resolution levels.
We demonstrate that our model derives reliable and consistent motion fields across different sampling trajectories.
arXiv Detail & Related papers (2024-04-26T14:25:07Z) - Improved Multi-Shot Diffusion-Weighted MRI with Zero-Shot
Self-Supervised Learning Reconstruction [7.347468593124183]
We introduce a novel msEPI reconstruction approach called zero-MIRID (zero-shot self-supervised learning of Multi-shot Image Reconstruction for Improved Diffusion MRI)
This method jointly reconstructs msEPI data by incorporating deep learning-based image regularization techniques.
It achieves superior results compared to the state-of-the-art parallel imaging method, as demonstrated in an in-vivo experiment.
arXiv Detail & Related papers (2023-08-09T17:54:56Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - Image Reconstruction for Accelerated MR Scan with Faster Fourier
Convolutional Neural Networks [87.87578529398019]
Partial scan is a common approach to accelerate Magnetic Resonance Imaging (MRI) data acquisition in both 2D and 3D settings.
We propose a novel convolutional operator called Faster Fourier Convolution (FasterFC) to replace the two consecutive convolution operations.
A 2D accelerated MRI method, FasterFC-End-to-End-VarNet, which uses FasterFC to improve the sensitivity maps and reconstruction quality.
A 3D accelerated MRI method called FasterFC-based Single-to-group Network (FAS-Net) that utilizes a single-to-group algorithm to guide k-space domain reconstruction
arXiv Detail & Related papers (2023-06-05T13:53:57Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - Accelerating 3D MULTIPLEX MRI Reconstruction with Deep Learning [7.85035197356331]
Multi-flip-angle (FA) and multi-echoLEX GRE method (MULTIP MRI) has been developed to simultaneously acquire multiple parametric images with just one single scan.
We propose a deep learning framework for undersampled 3D MRI data reconstruction.
The proposed deep learning method shows good performance in image quality and reconstruction time.
arXiv Detail & Related papers (2021-05-17T21:06:14Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
We propose a reconstruction method from sub-Nyquist samples in the time and spatial domain, that is based on unfolding the ISTA algorithm.
Our method allows reducing the number of array elements, sampling rate, and computational time while ensuring high quality imaging performance.
arXiv Detail & Related papers (2021-03-01T19:19:38Z) - Training Variational Networks with Multi-Domain Simulations:
Speed-of-Sound Image Reconstruction [5.47832435255656]
Variational Networks (VN) have been shown to be a potential learning-based approach for optimizing inverse problems in image reconstruction.
We present for the first time a VN solution for a pulse-echo SoS image reconstruction problem using waves with conventional transducers and single-sided tissue access.
We show that the proposed regularization techniques combined with multi-source domain training yield substantial improvements in the domain adaptation capabilities of VN.
arXiv Detail & Related papers (2020-06-25T13:32:08Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.