Accelerating 3D MULTIPLEX MRI Reconstruction with Deep Learning
- URL: http://arxiv.org/abs/2105.08163v1
- Date: Mon, 17 May 2021 21:06:14 GMT
- Title: Accelerating 3D MULTIPLEX MRI Reconstruction with Deep Learning
- Authors: Eric Z. Chen, Yongquan Ye, Xiao Chen, Jingyuan Lyu, Zhongqi Zhang,
Yichen Hu, Terrence Chen, Jian Xu, and Shanhui Sun
- Abstract summary: Multi-flip-angle (FA) and multi-echoLEX GRE method (MULTIP MRI) has been developed to simultaneously acquire multiple parametric images with just one single scan.
We propose a deep learning framework for undersampled 3D MRI data reconstruction.
The proposed deep learning method shows good performance in image quality and reconstruction time.
- Score: 7.85035197356331
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-contrast MRI images provide complementary contrast information about
the characteristics of anatomical structures and are commonly used in clinical
practice. Recently, a multi-flip-angle (FA) and multi-echo GRE method
(MULTIPLEX MRI) has been developed to simultaneously acquire multiple
parametric images with just one single scan. However, it poses two challenges
for MULTIPLEX to be used in the 3D high-resolution setting: a relatively long
scan time and the huge amount of 3D multi-contrast data for reconstruction.
Currently, no DL based method has been proposed for 3D MULTIPLEX data
reconstruction. We propose a deep learning framework for undersampled 3D MRI
data reconstruction and apply it to MULTIPLEX MRI. The proposed deep learning
method shows good performance in image quality and reconstruction time.
Related papers
- Coordinate-Based Neural Representation Enabling Zero-Shot Learning for 3D Multiparametric Quantitative MRI [4.707353256136099]
We propose SUMMIT, an innovative imaging methodology that includes data acquisition and an unsupervised reconstruction for simultaneous multiparametric qMRI.
The proposed unsupervised approach for qMRI reconstruction also introduces a novel zero-shot learning paradigm for multiparametric imaging applicable to various medical imaging modalities.
arXiv Detail & Related papers (2024-10-02T14:13:06Z) - Towards General Text-guided Image Synthesis for Customized Multimodal Brain MRI Generation [51.28453192441364]
Multimodal brain magnetic resonance (MR) imaging is indispensable in neuroscience and neurology.
Current MR image synthesis approaches are typically trained on independent datasets for specific tasks.
We present TUMSyn, a Text-guided Universal MR image Synthesis model, which can flexibly generate brain MR images.
arXiv Detail & Related papers (2024-09-25T11:14:47Z) - StoDIP: Efficient 3D MRF image reconstruction with deep image priors and stochastic iterations [3.4453266252081645]
We introduce StoDIP, a new algorithm that extends the ground-truth-free Deep Image Prior (DIP) reconstruction to 3D MRF imaging.
tested on a dataset of whole-brain scans from healthy volunteers, StoDIP demonstrated superior performance over the ground-truth-free reconstruction baselines, both quantitatively and qualitatively.
arXiv Detail & Related papers (2024-08-05T10:32:06Z) - Learning the Domain Specific Inverse NUFFT for Accelerated Spiral MRI using Diffusion Models [0.0]
We create a generative diffusion model-based reconstruction algorithm for multi-coil highly undersampled spiral MRI.
We show high quality (structural similarity > 0.87) in reconstructed images with ultrafast scan times (0.02 seconds for a 2D image).
arXiv Detail & Related papers (2024-04-18T17:40:23Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - Two-and-a-half Order Score-based Model for Solving 3D Ill-posed Inverse
Problems [7.074380879971194]
We propose a novel two-and-a-half order score-based model (TOSM) for 3D volumetric reconstruction.
During the training phase, our TOSM learns data distributions in 2D space, which reduces the complexity of training.
In the reconstruction phase, the TOSM updates the data distribution in 3D space, utilizing complementary scores along three directions.
arXiv Detail & Related papers (2023-08-16T17:07:40Z) - Improved Multi-Shot Diffusion-Weighted MRI with Zero-Shot
Self-Supervised Learning Reconstruction [7.347468593124183]
We introduce a novel msEPI reconstruction approach called zero-MIRID (zero-shot self-supervised learning of Multi-shot Image Reconstruction for Improved Diffusion MRI)
This method jointly reconstructs msEPI data by incorporating deep learning-based image regularization techniques.
It achieves superior results compared to the state-of-the-art parallel imaging method, as demonstrated in an in-vivo experiment.
arXiv Detail & Related papers (2023-08-09T17:54:56Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
We propose a novel Multi-modal Aggregation Network, named MANet, which is capable of discovering complementary representations from a fully sampled auxiliary modality.
In our MANet, the representations from the fully sampled auxiliary and undersampled target modalities are learned independently through a specific network.
Our MANet follows a hybrid domain learning framework, which allows it to simultaneously recover the frequency signal in the $k$-space domain.
arXiv Detail & Related papers (2021-10-15T13:16:59Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.