Matching the Statistical Query Lower Bound for $k$-Sparse Parity Problems with Sign Stochastic Gradient Descent
- URL: http://arxiv.org/abs/2404.12376v2
- Date: Fri, 06 Dec 2024 02:58:51 GMT
- Title: Matching the Statistical Query Lower Bound for $k$-Sparse Parity Problems with Sign Stochastic Gradient Descent
- Authors: Yiwen Kou, Zixiang Chen, Quanquan Gu, Sham M. Kakade,
- Abstract summary: We solve the $k$-sparse parity problem with sign gradient descent (SGD) on two-layer fully-connected neural networks.<n>We show that this approach can efficiently solve the $k$-sparse parity problem on a $d$-dimensional hypercube.<n>We then demonstrate how a trained neural network with sign SGD can effectively approximate this good network, solving the $k$-parity problem with small statistical errors.
- Score: 83.85536329832722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The $k$-sparse parity problem is a classical problem in computational complexity and algorithmic theory, serving as a key benchmark for understanding computational classes. In this paper, we solve the $k$-sparse parity problem with sign stochastic gradient descent, a variant of stochastic gradient descent (SGD) on two-layer fully-connected neural networks. We demonstrate that this approach can efficiently solve the $k$-sparse parity problem on a $d$-dimensional hypercube ($k\leq O(\sqrt{d})$) with a sample complexity of $\tilde{O}(d^{k-1})$ using $2^{\Theta(k)}$ neurons, matching the established $\Omega(d^{k})$ lower bounds of Statistical Query (SQ) models. Our theoretical analysis begins by constructing a good neural network capable of correctly solving the $k$-parity problem. We then demonstrate how a trained neural network with sign SGD can effectively approximate this good network, solving the $k$-parity problem with small statistical errors. To the best of our knowledge, this is the first result that matches the SQ lower bound for solving $k$-sparse parity problem using gradient-based methods.
Related papers
- Learning High-Degree Parities: The Crucial Role of the Initialization [15.527103574584663]
This paper shows that for gradient descent on regular neural networks, learnability depends on the initial weight distribution.
The positive result for almost-full parities is shown to hold up to $sigma=O(d-1)$, pointing to questions about a sharper threshold phenomenon.
arXiv Detail & Related papers (2024-12-06T10:05:10Z) - Convergence Rate Analysis of LION [54.28350823319057]
LION converges iterations of $cal(sqrtdK-)$ measured by gradient Karush-Kuhn-T (sqrtdK-)$.
We show that LION can achieve lower loss and higher performance compared to standard SGD.
arXiv Detail & Related papers (2024-11-12T11:30:53Z) - Learning sum of diverse features: computational hardness and efficient gradient-based training for ridge combinations [40.77319247558742]
We study the computational complexity of learning a target function $f_*:mathbbRdtomathbbR$ with additive structure.
We prove that a large subset of $f_*$ can be efficiently learned by gradient training of a two-layer neural network.
arXiv Detail & Related papers (2024-06-17T17:59:17Z) - Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
We study the problem of gradient descent learning of a single-index target function $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$
We prove that a two-layer neural network optimized by an SGD-based algorithm learns $f_*$ with a complexity that is not governed by information exponents.
arXiv Detail & Related papers (2024-06-03T17:56:58Z) - Collaborative non-parametric two-sample testing [55.98760097296213]
The goal is to identify nodes where the null hypothesis $p_v = q_v$ should be rejected.
We propose the non-parametric collaborative two-sample testing (CTST) framework that efficiently leverages the graph structure.
Our methodology integrates elements from f-divergence estimation, Kernel Methods, and Multitask Learning.
arXiv Detail & Related papers (2024-02-08T14:43:56Z) - SGD Finds then Tunes Features in Two-Layer Neural Networks with
near-Optimal Sample Complexity: A Case Study in the XOR problem [1.3597551064547502]
We consider the optimization process of minibatch descent gradient (SGD) on a 2-layer neural network with data separated by a quadratic ground truth function.
We prove that with data drawn from the $d$-dimensional Boolean hypercube labeled by the quadratic XOR'' function $y = -x_ix_j$, it is possible to train to a population error $o(1)$ with $d :textpolylog(d)$ samples.
arXiv Detail & Related papers (2023-09-26T17:57:44Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Information-Computation Tradeoffs for Learning Margin Halfspaces with
Random Classification Noise [50.64137465792738]
We study the problem of PAC $gamma$-margin halfspaces with Random Classification Noise.
We establish an information-computation tradeoff suggesting an inherent gap between the sample complexity of the problem and the sample complexity of computationally efficient algorithms.
arXiv Detail & Related papers (2023-06-28T16:33:39Z) - Generalization and Stability of Interpolating Neural Networks with
Minimal Width [37.908159361149835]
We investigate the generalization and optimization of shallow neural-networks trained by gradient in the interpolating regime.
We prove the training loss number minimizations $m=Omega(log4 (n))$ neurons and neurons $Tapprox n$.
With $m=Omega(log4 (n))$ neurons and $Tapprox n$, we bound the test loss training by $tildeO (1/)$.
arXiv Detail & Related papers (2023-02-18T05:06:15Z) - Is Stochastic Gradient Descent Near Optimal? [0.0]
We show that gradient descent achieves small expected error with a number of samples and total number of queries.
This suggests that SGD nearly achieves the information-theoretic sample complexity bounds of Joen & Van Roy (arXiv:2203.00246) in a computationally efficient manner.
arXiv Detail & Related papers (2022-09-18T18:26:43Z) - Bounding the Width of Neural Networks via Coupled Initialization -- A
Worst Case Analysis [121.9821494461427]
We show how to significantly reduce the number of neurons required for two-layer ReLU networks.
We also prove new lower bounds that improve upon prior work, and that under certain assumptions, are best possible.
arXiv Detail & Related papers (2022-06-26T06:51:31Z) - Optimal Gradient Sliding and its Application to Distributed Optimization
Under Similarity [121.83085611327654]
We structured convex optimization problems with additive objective $r:=p + q$, where $r$ is $mu$-strong convex similarity.
We proposed a method to solve problems master to agents' communication and local calls.
The proposed method is much sharper than the $mathcalO(sqrtL_q/mu)$ method.
arXiv Detail & Related papers (2022-05-30T14:28:02Z) - High-Dimensional Inference over Networks: Linear Convergence and
Statistical Guarantees [20.701475313495884]
We study a sparse linear regression over a network of agents, modeled as an undirected graph and no server node.
We analyze the convergence rate and statistical guarantees of a distributed projected gradient tracking-based algorithm.
arXiv Detail & Related papers (2022-01-21T01:26:08Z) - An efficient projection neural network for $\ell_1$-regularized logistic
regression [10.517079029721257]
This paper presents a simple projection neural network for $ell_$-regularized logistics regression.
The proposed neural network does not require any extra auxiliary variable nor any smooth approximation.
We also investigate the convergence of the proposed neural network by using the Lyapunov theory and show that it converges to a solution of the problem with any arbitrary initial value.
arXiv Detail & Related papers (2021-05-12T06:13:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.