Efflex: Efficient and Flexible Pipeline for Spatio-Temporal Trajectory Graph Modeling and Representation Learning
- URL: http://arxiv.org/abs/2404.12400v1
- Date: Mon, 15 Apr 2024 05:36:27 GMT
- Title: Efflex: Efficient and Flexible Pipeline for Spatio-Temporal Trajectory Graph Modeling and Representation Learning
- Authors: Ming Cheng, Ziyi Zhou, Bowen Zhang, Ziyu Wang, Jiaqi Gan, Ziang Ren, Weiqi Feng, Yi Lyu, Hefan Zhang, Xingjian Diao,
- Abstract summary: We introduce Efflex, a comprehensive pipeline for graph modeling and learning of large-temporal trajectories.
Efflex pioneers the incorporation of a multivolume kestnear neighbors (KNN) algorithm with feature fusion for graph construction.
The groundbreaking graph construction mechanism and the high-performance lightweight GCN increase embedding extraction speed by up to 36 times faster.
- Score: 8.690298376643959
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the landscape of spatio-temporal data analytics, effective trajectory representation learning is paramount. To bridge the gap of learning accurate representations with efficient and flexible mechanisms, we introduce Efflex, a comprehensive pipeline for transformative graph modeling and representation learning of the large-volume spatio-temporal trajectories. Efflex pioneers the incorporation of a multi-scale k-nearest neighbors (KNN) algorithm with feature fusion for graph construction, marking a leap in dimensionality reduction techniques by preserving essential data features. Moreover, the groundbreaking graph construction mechanism and the high-performance lightweight GCN increase embedding extraction speed by up to 36 times faster. We further offer Efflex in two versions, Efflex-L for scenarios demanding high accuracy, and Efflex-B for environments requiring swift data processing. Comprehensive experimentation with the Porto and Geolife datasets validates our approach, positioning Efflex as the state-of-the-art in the domain. Such enhancements in speed and accuracy highlight the versatility of Efflex, underscoring its wide-ranging potential for deployment in time-sensitive and computationally constrained applications.
Related papers
- DeFoG: Discrete Flow Matching for Graph Generation [45.037260759871124]
We propose DeFoG, a novel framework using discrete flow matching for graph generation.
DeFoG employs a flow-based approach that features an efficient linear noising process and a flexible denoising process.
We show that DeFoG achieves state-of-the-art results on synthetic and molecular datasets.
arXiv Detail & Related papers (2024-10-05T18:52:54Z) - SAFLEX: Self-Adaptive Augmentation via Feature Label Extrapolation [29.598247232905283]
We present a novel, efficient method for data augmentation, effectively bridging the gap between existing augmentation strategies and emerging datasets and learning tasks.
Our findings highlight the potential to adapt existing augmentation pipelines for new data types and tasks, signaling a move towards more adaptable and resilient training frameworks.
arXiv Detail & Related papers (2024-10-03T14:21:49Z) - LeRF: Learning Resampling Function for Adaptive and Efficient Image Interpolation [64.34935748707673]
Recent deep neural networks (DNNs) have made impressive progress in performance by introducing learned data priors.
We propose a novel method of Learning Resampling (termed LeRF) which takes advantage of both the structural priors learned by DNNs and the locally continuous assumption.
LeRF assigns spatially varying resampling functions to input image pixels and learns to predict the shapes of these resampling functions with a neural network.
arXiv Detail & Related papers (2024-07-13T16:09:45Z) - Adapting to Length Shift: FlexiLength Network for Trajectory Prediction [53.637837706712794]
Trajectory prediction plays an important role in various applications, including autonomous driving, robotics, and scene understanding.
Existing approaches mainly focus on developing compact neural networks to increase prediction precision on public datasets, typically employing a standardized input duration.
We introduce a general and effective framework, the FlexiLength Network (FLN), to enhance the robustness of existing trajectory prediction against varying observation periods.
arXiv Detail & Related papers (2024-03-31T17:18:57Z) - FlexNN: A Dataflow-aware Flexible Deep Learning Accelerator for Energy-Efficient Edge Devices [0.6892601897291335]
This paper introduces FlexNN, a Flexible Neural Network accelerator, which adopts agile design principles.
Our design revolutionizes by enabling adaptable dataflows of any type through software descriptors.
To further enhance throughput and reduce energy consumption, we propose a novel sparsity-based acceleration logic.
arXiv Detail & Related papers (2024-03-14T01:39:12Z) - VoxNeRF: Bridging Voxel Representation and Neural Radiance Fields for
Enhanced Indoor View Synthesis [51.49008959209671]
We introduce VoxNeRF, a novel approach that leverages volumetric representations to enhance the quality and efficiency of indoor view synthesis.
We employ multi-resolution hash grids to adaptively capture spatial features, effectively managing occlusions and the intricate geometry of indoor scenes.
We validate our approach against three public indoor datasets and demonstrate that VoxNeRF outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-11-09T11:32:49Z) - Efficient Graph Neural Network Inference at Large Scale [54.89457550773165]
Graph neural networks (GNNs) have demonstrated excellent performance in a wide range of applications.
Existing scalable GNNs leverage linear propagation to preprocess the features and accelerate the training and inference procedure.
We propose a novel adaptive propagation order approach that generates the personalized propagation order for each node based on its topological information.
arXiv Detail & Related papers (2022-11-01T14:38:18Z) - Tutel: Adaptive Mixture-of-Experts at Scale [20.036168971435306]
Sparsely-gated mixture-of-experts (MoE) has been widely adopted to scale deep learning models to trillion-plus parameters with fixed computational cost.
We present Flex, a highly scalable stack design and implementation for MoE with dynamically adaptive parallelism and pipelining.
Our evaluation shows that Flex efficiently and effectively runs a real-world MoE-based model named SwinV2-MoE, built upon Swin Transformer V2, a state-of-the-art computer vision architecture.
arXiv Detail & Related papers (2022-06-07T15:20:20Z) - Fast Dynamic Radiance Fields with Time-Aware Neural Voxels [106.69049089979433]
We propose a radiance field framework by representing scenes with time-aware voxel features, named as TiNeuVox.
Our framework accelerates the optimization of dynamic radiance fields while maintaining high rendering quality.
Our TiNeuVox completes training with only 8 minutes and 8-MB storage cost while showing similar or even better rendering performance than previous dynamic NeRF methods.
arXiv Detail & Related papers (2022-05-30T17:47:31Z) - FlexBlock: A Flexible DNN Training Accelerator with Multi-Mode Block
Floating Point Support [8.596477111386083]
This paper builds upon an algorithmic observation that we can accelerate the training by leveraging multiple BFP precisions.
We develop a flexible DNN training accelerator, dubbed FlexBlock, which supports three different BFP precision modes.
We evaluate the effectiveness of FlexBlock architecture using well-known DNNs on CIFAR, ImageNet and WMT14 datasets.
arXiv Detail & Related papers (2022-03-13T15:05:34Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.