Depth-Adaptive Graph Neural Networks via Learnable Bakry-'Emery Curvature
- URL: http://arxiv.org/abs/2503.01079v1
- Date: Mon, 03 Mar 2025 00:48:41 GMT
- Title: Depth-Adaptive Graph Neural Networks via Learnable Bakry-'Emery Curvature
- Authors: Asela Hevapathige, Ahad N. Zehmakan, Qing Wang,
- Abstract summary: Graph Neural Networks (GNNs) have demonstrated strong representation learning capabilities for graph-based tasks.<n>Recent advances on GNNs leverage geometric properties, such as curvature, to enhance its representation capabilities.<n>We propose integrating Bakry-'Emery curvature, which captures both structural and task-driven aspects of information propagation.
- Score: 7.2716257100195385
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have demonstrated strong representation learning capabilities for graph-based tasks. Recent advances on GNNs leverage geometric properties, such as curvature, to enhance its representation capabilities by modeling complex connectivity patterns and information flow within graphs. However, most existing approaches focus solely on discrete graph topology, overlooking diffusion dynamics and task-specific dependencies essential for effective learning. To address this, we propose integrating Bakry-\'Emery curvature, which captures both structural and task-driven aspects of information propagation. We develop an efficient, learnable approximation strategy, making curvature computation scalable for large graphs. Furthermore, we introduce an adaptive depth mechanism that dynamically adjusts message-passing layers per vertex based on its curvature, ensuring efficient propagation. Our theoretical analysis establishes a link between curvature and feature distinctiveness, showing that high-curvature vertices require fewer layers, while low-curvature ones benefit from deeper propagation. Extensive experiments on benchmark datasets validate the effectiveness of our approach, showing consistent performance improvements across diverse graph learning tasks.
Related papers
- Discrete Curvature Graph Information Bottleneck [15.867882286328774]
We propose a novel Discrete Curvature Graph Information Bottleneck (CurvGIB) framework to optimize the information transport structure.<n>CurvGIB advances the Variational Information Bottleneck (VIB) principle for Ricci curvature optimization to learn the optimal information transport pattern.<n>Experiments on various datasets demonstrate the superior effectiveness and interpretability of CurvGIB.
arXiv Detail & Related papers (2024-12-28T03:33:55Z) - TANGNN: a Concise, Scalable and Effective Graph Neural Networks with Top-m Attention Mechanism for Graph Representation Learning [7.879217146851148]
We propose an innovative Graph Neural Network (GNN) architecture that integrates a Top-m attention mechanism aggregation component and a neighborhood aggregation component.
To assess the effectiveness of our proposed model, we have applied it to citation sentiment prediction, a novel task previously unexplored in the GNN field.
arXiv Detail & Related papers (2024-11-23T05:31:25Z) - Information propagation dynamics in Deep Graph Networks [1.8130068086063336]
Deep Graph Networks (DGNs) have emerged as a family of deep learning models that can process and learn structured information.
This thesis investigates the dynamics of information propagation within DGNs for static and dynamic graphs, focusing on their design as dynamical systems.
arXiv Detail & Related papers (2024-10-14T12:55:51Z) - Towards Relation-centered Pooling and Convolution for Heterogeneous
Graph Learning Networks [11.421162988355146]
Heterogeneous graph neural network has unleashed great potential on graph representation learning.
We design a relation-centered Pooling and Convolution for Heterogeneous Graph learning Network, namely PC-HGN, to enable relation-specific sampling and cross-relation convolutions.
We evaluate the performance of the proposed model by comparing with state-of-the-art graph learning models on three different real-world datasets.
arXiv Detail & Related papers (2022-10-31T08:43:32Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Dynamic Graph Representation Learning via Graph Transformer Networks [41.570839291138114]
We propose a Transformer-based dynamic graph learning method named Dynamic Graph Transformer (DGT)
DGT has spatial-temporal encoding to effectively learn graph topology and capture implicit links.
We show that DGT presents superior performance compared with several state-of-the-art baselines.
arXiv Detail & Related papers (2021-11-19T21:44:23Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - Geometrically Principled Connections in Graph Neural Networks [66.51286736506658]
We argue geometry should remain the primary driving force behind innovation in the emerging field of geometric deep learning.
We relate graph neural networks to widely successful computer graphics and data approximation models: radial basis functions (RBFs)
We introduce affine skip connections, a novel building block formed by combining a fully connected layer with any graph convolution operator.
arXiv Detail & Related papers (2020-04-06T13:25:46Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.