論文の概要: Generalizing Machine Learning Evaluation through the Integration of Shannon Entropy and Rough Set Theory
- arxiv url: http://arxiv.org/abs/2404.12511v1
- Date: Thu, 18 Apr 2024 21:22:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 16:44:29.225956
- Title: Generalizing Machine Learning Evaluation through the Integration of Shannon Entropy and Rough Set Theory
- Title(参考訳): シャノンエントロピーとラフセット理論の統合による機械学習評価の一般化
- Authors: Olga Cherednichenko, Dmytro Chernyshov, Dmytro Sytnikov, Polina Sytnikova,
- Abstract要約: 我々は、粗集合論の粒度とシャノンエントロピーの不確かさの定量化を相乗化する包括的枠組みを導入する。
我々の手法は様々なデータセットで厳密にテストされており、予測性能を評価するだけでなく、基礎となるデータの複雑さとモデルロバスト性を照らす能力を示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research paper delves into the innovative integration of Shannon entropy and rough set theory, presenting a novel approach to generalize the evaluation approach in machine learning. The conventional application of entropy, primarily focused on information uncertainty, is extended through its combination with rough set theory to offer a deeper insight into data's intrinsic structure and the interpretability of machine learning models. We introduce a comprehensive framework that synergizes the granularity of rough set theory with the uncertainty quantification of Shannon entropy, applied across a spectrum of machine learning algorithms. Our methodology is rigorously tested on various datasets, showcasing its capability to not only assess predictive performance but also to illuminate the underlying data complexity and model robustness. The results underscore the utility of this integrated approach in enhancing the evaluation landscape of machine learning, offering a multi-faceted perspective that balances accuracy with a profound understanding of data attributes and model dynamics. This paper contributes a groundbreaking perspective to machine learning evaluation, proposing a method that encapsulates a holistic view of model performance, thereby facilitating more informed decision-making in model selection and application.
- Abstract(参考訳): 本研究では,シャノンエントロピーと粗集合理論の革新的統合を考察し,機械学習における評価手法を一般化するための新しいアプローチを提案する。
エントロピーの従来の応用は、主に情報の不確実性に焦点を当てており、データ固有の構造と機械学習モデルの解釈可能性に関する深い洞察を提供するために、粗い集合理論と組み合わせて拡張されている。
本稿では,粗集合論の粒度とシャノンエントロピーの不確かさの定量化を,機械学習アルゴリズムのスペクトルに適用した包括的フレームワークを提案する。
我々の手法は様々なデータセットで厳密にテストされており、予測性能を評価するだけでなく、基礎となるデータの複雑さとモデルロバスト性を照らす能力を示している。
この結果は、機械学習の評価環境を強化するための統合されたアプローチの有用性を強調し、精度とデータ属性の深い理解とモデルダイナミクスのバランスをとる多面的な視点を提供する。
本稿では、モデル性能の全体像をカプセル化する手法を提案し、モデル選択と応用におけるより深い意思決定を容易にすることを目的とした、機械学習評価に対する画期的な視点を提供する。
関連論文リスト
- On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
複数モーダルな)自己教師付き表現学習のための連続領域における識別確率モデル問題について検討する。
我々は、自己教師付き表現学習における現在のInfoNCEに基づくコントラスト損失の制限を明らかにするために一般化誤差解析を行う。
論文 参考訳(メタデータ) (2024-10-11T18:02:46Z) - Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
本研究では,ニューラルネットワークをアンサンブル手法として活用することを検討する。
低多様性のアンサンブルを学習するリスクを動機として,ベースモデル予測をランダムにドロップすることでモデルの正規化を提案する。
このアプローチはアンサンブル内の多様性を低くし、オーバーフィッティングを減らし、一般化能力を向上させる。
論文 参考訳(メタデータ) (2024-10-06T15:25:39Z) - Causal Inference Tools for a Better Evaluation of Machine Learning [0.0]
本稿では、通常最小方形回帰(OLS)、可変解析(ANOVA)、ロジスティック回帰(ロジスティック回帰)などの重要な統計手法を紹介する。
この文書は研究者や実践者のガイドとして機能し、これらのテクニックがモデル行動、パフォーマンス、公平性に対する深い洞察を提供する方法について詳述している。
論文 参考訳(メタデータ) (2024-10-02T10:03:29Z) - Unified Explanations in Machine Learning Models: A Perturbation Approach [0.0]
XAIとモデリング技術の不整合は、これらの説明可能性アプローチの有効性に疑念を投げかけるという望ましくない効果をもたらす可能性がある。
我々はXAI, SHapley Additive exPlanations (Shap) において, 一般的なモデルに依存しない手法に対する系統的摂動解析を提案する。
我々は、一般的な機械学習とディープラーニングの手法のスイートと、静的ケースホールドで生成された説明の正確さを定量化するためのメトリクスの中で、動的推論の設定において、相対的な特徴重要度を生成するアルゴリズムを考案した。
論文 参考訳(メタデータ) (2024-05-30T16:04:35Z) - Self-consistent Validation for Machine Learning Electronic Structure [81.54661501506185]
機械学習と自己整合フィールド法を統合して,検証コストの低減と解釈可能性の両立を実現する。
これにより、積極的学習によるモデルの能力の探索が可能となり、実際の研究への統合への信頼がもたらされる。
論文 参考訳(メタデータ) (2024-02-15T18:41:35Z) - A Bayesian Unification of Self-Supervised Clustering and Energy-Based
Models [11.007541337967027]
我々は、最先端の自己教師型学習目標のベイズ分析を行う。
目的関数が既存の自己教師型学習戦略より優れていることを示す。
また、GEDIをニューロシンボリックな枠組みに統合できることを実証した。
論文 参考訳(メタデータ) (2023-12-30T04:46:16Z) - GLUECons: A Generic Benchmark for Learning Under Constraints [102.78051169725455]
本研究では,自然言語処理とコンピュータビジョンの分野における9つのタスクの集合であるベンチマークを作成する。
外部知識を制約としてモデル化し、各タスクの制約のソースを特定し、これらの制約を使用するさまざまなモデルを実装します。
論文 参考訳(メタデータ) (2023-02-16T16:45:36Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - AcME -- Accelerated Model-agnostic Explanations: Fast Whitening of the
Machine-Learning Black Box [1.7534486934148554]
解釈可能性のアプローチは、ユーザが待つことなく、実行可能な洞察を提供するべきです。
本稿では,グローバルレベルとローカルレベルの両方で特徴的重要性のスコアを迅速に提供する解釈可能性アプローチである,アクセレーションモデル非依存説明(AcME)を提案する。
AcMEは機能ランキングを計算しますが、機能値の変化がモデル予測にどのように影響するかを評価するために、What-if分析ツールも提供しています。
論文 参考訳(メタデータ) (2021-12-23T15:18:13Z) - Modeling Generalization in Machine Learning: A Methodological and
Computational Study [0.8057006406834467]
我々は、機械学習の一般化を評価する際に、トレーニングデータの凸殻の概念を用いる。
機械学習モデルの一般化能力と次元に関するすべての指標との予期せぬ弱い関係を観察する。
論文 参考訳(メタデータ) (2020-06-28T19:06:16Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
NERタスクをテストベッドとして、異なる視点から既存モデルの一般化挙動を分析する。
詳細な分析による実験は、既存のニューラルNERモデルのボトルネックを診断する。
本論文の副産物として,最近のNER論文の包括的要約を含むプロジェクトをオープンソース化した。
論文 参考訳(メタデータ) (2020-01-12T04:33:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。