論文の概要: Causal Inference Tools for a Better Evaluation of Machine Learning
- arxiv url: http://arxiv.org/abs/2410.01392v1
- Date: Wed, 2 Oct 2024 10:03:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 21:19:25.830255
- Title: Causal Inference Tools for a Better Evaluation of Machine Learning
- Title(参考訳): 機械学習のより良い評価のための因果推論ツール
- Authors: Michaël Soumm,
- Abstract要約: 本稿では、通常最小方形回帰(OLS)、可変解析(ANOVA)、ロジスティック回帰(ロジスティック回帰)などの重要な統計手法を紹介する。
この文書は研究者や実践者のガイドとして機能し、これらのテクニックがモデル行動、パフォーマンス、公平性に対する深い洞察を提供する方法について詳述している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a comprehensive framework for applying rigorous statistical techniques from econometrics to analyze and improve machine learning systems. We introduce key statistical methods such as Ordinary Least Squares (OLS) regression, Analysis of Variance (ANOVA), and logistic regression, explaining their theoretical foundations and practical applications in machine learning evaluation. The document serves as a guide for researchers and practitioners, detailing how these techniques can provide deeper insights into model behavior, performance, and fairness. We cover the mathematical principles behind each method, discuss their assumptions and limitations, and provide step-by-step instructions for their implementation. The paper also addresses how to interpret results, emphasizing the importance of statistical significance and effect size. Through illustrative examples, we demonstrate how these tools can reveal subtle patterns and interactions in machine learning models that are not apparent from traditional evaluation metrics. By connecting the fields of econometrics and machine learning, this work aims to equip readers with powerful analytical tools for more rigorous and comprehensive evaluation of AI systems. The framework presented here contributes to developing more robust, interpretable, and fair machine learning technologies.
- Abstract(参考訳): 本稿では,エコノメトリから厳密な統計手法を適用し,機械学習システムの解析と改善を行う包括的フレームワークを提案する。
本稿では,通常最小方形(OLS)回帰,ANOVA(Analytic of Variance)回帰,ロジスティック回帰などの重要な統計手法を紹介し,その理論的基礎と機械学習評価における実践的応用について説明する。
この文書は研究者や実践者のガイドとして機能し、これらのテクニックがモデル行動、パフォーマンス、公平性に対する深い洞察を提供する方法について詳述している。
本稿では,各手法の背景にある数学的原理を概説し,その仮定と限界について議論し,その実装について段階的に説明する。
また、統計的意義と効果サイズの重要性を強調して、結果の解釈方法についても論じる。
具体例を通して、従来の評価指標から明らかでない機械学習モデルにおいて、これらのツールがどのように微妙なパターンや相互作用を明らかにするかを実証する。
この研究は、計量学と機械学習の分野を結びつけることによって、AIシステムのより厳密で包括的な評価を行うための強力な分析ツールを読者に提供することを目的としている。
ここで提示されるフレームワークは、より堅牢で、解釈可能で、公正な機械学習技術の開発に寄与する。
関連論文リスト
- Towards the Best Solution for Complex System Reliability: Can Statistics Outperform Machine Learning? [39.58317527488534]
本研究は,信頼性評価を改善するための古典的統計手法と機械学習手法の有効性を比較した。
従来の統計アルゴリズムは、ブラックボックスの機械学習手法よりも正確で解釈可能な結果が得られることを実証することを目的としている。
論文 参考訳(メタデータ) (2024-10-05T17:31:18Z) - A Benchmark for Fairness-Aware Graph Learning [58.515305543487386]
本稿では,10の代表的な公正性を考慮したグラフ学習手法に関する広範なベンチマークを示す。
我々の詳細な分析は、既存の手法の強みと限界に関する重要な洞察を明らかにしている。
論文 参考訳(メタデータ) (2024-07-16T18:43:43Z) - Generalizing Machine Learning Evaluation through the Integration of Shannon Entropy and Rough Set Theory [0.0]
我々は、粗集合論の粒度とシャノンエントロピーの不確かさの定量化を相乗化する包括的枠組みを導入する。
我々の手法は様々なデータセットで厳密にテストされており、予測性能を評価するだけでなく、基礎となるデータの複雑さとモデルロバスト性を照らす能力を示している。
論文 参考訳(メタデータ) (2024-04-18T21:22:42Z) - Interpretable and Explainable Machine Learning Methods for Predictive
Process Monitoring: A Systematic Literature Review [1.3812010983144802]
本稿では,機械学習モデル(ML)の予測プロセスマイニングの文脈における説明可能性と解釈可能性について,系統的に検討する。
我々は、様々なアプリケーション領域にまたがる現在の方法論とその応用の概要を概観する。
我々の研究は、プロセス分析のためのより信頼性が高く透明で効果的なインテリジェントシステムの開発と実装方法について、研究者や実践者がより深く理解することを目的としている。
論文 参考訳(メタデータ) (2023-12-29T12:43:43Z) - Metric Tools for Sensitivity Analysis with Applications to Neural
Networks [0.0]
説明可能な人工知能(XAI)は、機械学習モデルによる予測の解釈を提供することを目的としている。
本稿では,計量手法を用いてMLモデルの感性を研究するための理論的枠組みを提案する。
$alpha$-curvesと呼ばれる新しいメトリクスの完全なファミリーが抽出される。
論文 参考訳(メタデータ) (2023-05-03T18:10:21Z) - Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics [0.0]
我々は,モデル予測が説明できる範囲を定量化するために,6つの異なるモデルに依存しないメトリクスを開発した。
これらのメトリクスは、局所的な重要性、グローバルな重要性、代理予測など、モデル説明可能性のさまざまな側面を測定する。
分類と回帰タスクにおけるこれらのメトリクスの実用性を実証し、これらのメトリクスを公開のために既存のPythonパッケージに統合する。
論文 参考訳(メタデータ) (2023-02-23T15:28:36Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - Individual Explanations in Machine Learning Models: A Survey for
Practitioners [69.02688684221265]
社会的関連性の高い領域の決定に影響を与える洗練された統計モデルの使用が増加しています。
多くの政府、機関、企業は、アウトプットが人間の解釈可能な方法で説明しにくいため、採用に消極的です。
近年,機械学習モデルに解釈可能な説明を提供する方法として,学術文献が多数提案されている。
論文 参考訳(メタデータ) (2021-04-09T01:46:34Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
既存の説明可能性技術を評価するための診断特性のリストを作成する。
そこで本研究では, モデルの性能と有理性との整合性の関係を明らかにするために, 説明可能性手法によって割り当てられた有理性スコアと有理性入力領域の人間のアノテーションを比較した。
論文 参考訳(メタデータ) (2020-09-25T12:01:53Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
機械学習はデータに対する深い洞察を与え、マシンが高品質な予測を行うことを可能にする。
ほとんどの高度な機械学習アプローチは、大規模なデータを扱う場合の膨大な時間コストに悩まされる。
大規模機械学習は、ビッグデータからパターンを、同等のパフォーマンスで効率的に学習することを目的としている。
論文 参考訳(メタデータ) (2020-08-10T06:07:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。