論文の概要: TrACT: A Training Dynamics Aware Contrastive Learning Framework for Long-tail Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2404.12538v2
- Date: Tue, 30 Apr 2024 03:46:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 18:49:14.810713
- Title: TrACT: A Training Dynamics Aware Contrastive Learning Framework for Long-tail Trajectory Prediction
- Title(参考訳): TrACT:ロングテール軌道予測のためのコントラスト学習フレームワークを意識したトレーニングダイナミクス
- Authors: Junrui Zhang, Mozhgan Pourkeshavarz, Amir Rasouli,
- Abstract要約: 本稿では,よりリッチなトレーニングダイナミックス情報を,原型的コントラスト学習フレームワークに組み込むことを提案する。
我々は,2つの大規模自然主義データセットを用いたアプローチの実証評価を行った。
- 参考スコア(独自算出の注目度): 7.3292387742640415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a safety critical task, autonomous driving requires accurate predictions of road users' future trajectories for safe motion planning, particularly under challenging conditions. Yet, many recent deep learning methods suffer from a degraded performance on the challenging scenarios, mainly because these scenarios appear less frequently in the training data. To address such a long-tail issue, existing methods force challenging scenarios closer together in the feature space during training to trigger information sharing among them for more robust learning. These methods, however, primarily rely on the motion patterns to characterize scenarios, omitting more informative contextual information, such as interactions and scene layout. We argue that exploiting such information not only improves prediction accuracy but also scene compliance of the generated trajectories. In this paper, we propose to incorporate richer training dynamics information into a prototypical contrastive learning framework. More specifically, we propose a two-stage process. First, we generate rich contextual features using a baseline encoder-decoder framework. These features are split into clusters based on the model's output errors, using the training dynamics information, and a prototype is computed within each cluster. Second, we retrain the model using the prototypes in a contrastive learning framework. We conduct empirical evaluations of our approach using two large-scale naturalistic datasets and show that our method achieves state-of-the-art performance by improving accuracy and scene compliance on the long-tail samples. Furthermore, we perform experiments on a subset of the clusters to highlight the additional benefit of our approach in reducing training bias.
- Abstract(参考訳): 安全クリティカルタスクとして、自律走行には、特に困難な状況下での安全な運動計画のために、道路利用者の将来の軌跡を正確に予測する必要がある。
しかし、近年のディープラーニング手法の多くは、これらのシナリオがトレーニングデータにあまり現れないために、難易度の高いシナリオのパフォーマンス低下に悩まされている。
このような長い課題に対処するため、既存の手法では、トレーニング中に機能領域のシナリオをより緊密に組み合わせて、より堅牢な学習のために情報共有をトリガーする。
しかし、これらの手法は主にシナリオを特徴づける動きパターンに依存しており、インタラクションやシーンレイアウトといったより情報に富む情報を省略している。
このような情報を活用することで、予測精度が向上するだけでなく、生成された軌道のシーンコンプライアンスも向上する、と我々は主張する。
本稿では,よりリッチなトレーニングダイナミックス情報を原型的コントラスト学習フレームワークに組み込むことを提案する。
具体的には,2段階のプロセスを提案する。
まず、ベースラインエンコーダデコーダフレームワークを用いて、リッチなコンテキスト特徴を生成する。
これらの機能は、トレーニングダイナミクス情報を使用して、モデルの出力エラーに基づいてクラスタに分割され、各クラスタ内でプロトタイプが計算される。
第二に、比較学習フレームワークでプロトタイプを用いてモデルを再訓練する。
提案手法は,2つの大規模自然主義的データセットを用いて提案手法の実証評価を行い,提案手法の精度向上とロングテールサンプルのシーンコンプライアンスの実現により,最先端の性能を実現することを示す。
さらに、トレーニングバイアスを減らすためのアプローチのさらなるメリットを強調するために、クラスタのサブセットで実験を行います。
関連論文リスト
- A Practitioner's Guide to Continual Multimodal Pretraining [83.63894495064855]
マルチモーダル・ファンデーション・モデルは視覚と言語を交わす多くのアプリケーションに役立っている。
モデルを更新し続けるために、継続事前トレーニングの研究は主に、大規模な新しいデータに対する頻度の低い、差別的な更新、あるいは頻繁に行われるサンプルレベルの更新のシナリオを探求する。
本稿では,FoMo-in-Flux(FoMo-in-Flux)について紹介する。
論文 参考訳(メタデータ) (2024-08-26T17:59:01Z) - Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification [34.37262622415682]
我々はData Adaptive Tracebackと呼ばれる新しい適応フレームワークを提案する。
具体的には、ゼロショット法を用いて、事前学習データの最もダウンストリームなタスク関連サブセットを抽出する。
我々は、擬似ラベルに基づく半教師付き手法を採用し、事前学習画像の再利用と、半教師付き学習における確証バイアス問題に対処するための視覚言語コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2024-07-11T18:01:58Z) - Robust Machine Learning by Transforming and Augmenting Imperfect
Training Data [6.928276018602774]
この論文は、現代の機械学習のいくつかのデータ感度を探求する。
まず、トレーニングデータで測定された事前の人間の識別をMLが符号化するのを防ぐ方法について論じる。
次に、トレーニング中に予測忠実度を提供するが、デプロイ時に信頼性が低い突発的特徴を含むデータから学習する問題について論じる。
論文 参考訳(メタデータ) (2023-12-19T20:49:28Z) - An Emulator for Fine-Tuning Large Language Models using Small Language
Models [91.02498576056057]
本研究では,異なるスケールでの事前学習と微調整の結果を近似する分布から,エミュレート・ファインチューニング(EFT)を原理的かつ実用的なサンプリング法として導入する。
EFTは、追加トレーニングを伴わずに、有益性や無害性といった競合する行動特性をテスト時間で調整できることを示す。
最後に、LMアップスケーリングと呼ばれるエミュレートされたファインチューニングの特殊な場合において、小さなファインチューニングモデルと組み合わせることで、大きな事前学習モデルのリソース集約的なファインチューニングを回避する。
論文 参考訳(メタデータ) (2023-10-19T17:57:16Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Bilevel Fast Scene Adaptation for Low-Light Image Enhancement [50.639332885989255]
低照度シーンにおける画像の強調は、コンピュータビジョンにおいて難しいが、広く懸念されている課題である。
主な障害は、異なるシーンにまたがる分散の相違によるモデリングの混乱にある。
上述の潜在対応をモデル化するための双レベルパラダイムを導入する。
エンコーダのシーン非関連な一般化を多様なシーンにもたらすために、双方向学習フレームワークを構築した。
論文 参考訳(メタデータ) (2023-06-02T08:16:21Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Leveraging Key Information Modeling to Improve Less-Data Constrained
News Headline Generation via Duality Fine-Tuning [12.443476695459553]
本稿では,鍵情報予測と見出し生成タスクの確率的双対性制約を定式化することにより,新しい双対性微調整法を提案する。
提案手法は、限られたデータからより多くの情報をキャプチャし、別々のタスク間の接続を構築することができ、データ制約の少ない生成タスクに適している。
提案手法は,2つの公開データセット上で,言語モデリングの指標と情報量補正の指標を用いて,性能向上に有効かつ効果的であることを示すため,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-10-10T07:59:36Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。