iTBLS: A Dataset of Interactive Conversations Over Tabular Information
- URL: http://arxiv.org/abs/2404.12580v1
- Date: Fri, 19 Apr 2024 02:11:41 GMT
- Title: iTBLS: A Dataset of Interactive Conversations Over Tabular Information
- Authors: Anirudh Sundar, Christopher Richardson, William Gay, Larry Heck,
- Abstract summary: iTBLS is a dataset of interactive conversations situated in tables from scientific articles.
iTBLS broadens the scope of interactions to include mathematical reasoning, natural language manipulation, and expansion of existing tables from natural language conversation.
- Score: 2.9665568096804846
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces Interactive Tables (iTBLS), a dataset of interactive conversations situated in tables from scientific articles. This dataset is designed to facilitate human-AI collaborative problem-solving through AI-powered multi-task tabular capabilities. In contrast to prior work that models interactions as factoid QA or procedure synthesis, iTBLS broadens the scope of interactions to include mathematical reasoning, natural language manipulation, and expansion of existing tables from natural language conversation by delineating interactions into one of three tasks: interpretation, modification, or generation. Additionally, the paper presents a suite of baseline approaches to iTBLS, utilizing zero-shot prompting and parameter-efficient fine-tuning for different computing situations. We also introduce a novel multi-step approach and show how it can be leveraged in conjunction with parameter-efficient fine-tuning to achieve the state-of-the-art on iTBLS; outperforming standard parameter-efficient fine-tuning by up to 15% on interpretation, 18% on modification, and 38% on generation.
Related papers
- Scalable Representation Learning for Multimodal Tabular Transactions [14.18267117657451]
We present an innovative and scalable solution to these challenges.
We propose a parameter efficient decoder that interleaves transaction and text modalities.
We validate the efficacy of our solution on a large-scale dataset of synthetic payments transactions.
arXiv Detail & Related papers (2024-10-10T12:18:42Z) - H-STAR: LLM-driven Hybrid SQL-Text Adaptive Reasoning on Tables [56.73919743039263]
This paper introduces a novel algorithm that integrates both symbolic and semantic (textual) approaches in a two-stage process to address limitations.
Our experiments demonstrate that H-STAR significantly outperforms state-of-the-art methods across three question-answering (QA) and fact-verification datasets.
arXiv Detail & Related papers (2024-06-29T21:24:19Z) - Making Pre-trained Language Models Great on Tabular Prediction [50.70574370855663]
The transferability of deep neural networks (DNNs) has made significant progress in image and language processing.
We present TP-BERTa, a specifically pre-trained LM for tabular data prediction.
A novel relative magnitude tokenization converts scalar numerical feature values to finely discrete, high-dimensional tokens, and an intra-feature attention approach integrates feature values with the corresponding feature names.
arXiv Detail & Related papers (2024-03-04T08:38:56Z) - Guiding Language Model Reasoning with Planning Tokens [122.43639723387516]
Large language models (LLMs) have recently attracted considerable interest for their ability to perform complex reasoning tasks.
We propose a hierarchical generation scheme to encourage a more structural generation of chain-of-thought steps.
Our approach requires a negligible increase in trainable parameters (0.001%) and can be applied through either full fine-tuning or a more parameter-efficient scheme.
arXiv Detail & Related papers (2023-10-09T13:29:37Z) - Syntax and Semantics Meet in the "Middle": Probing the Syntax-Semantics
Interface of LMs Through Agentivity [68.8204255655161]
We present the semantic notion of agentivity as a case study for probing such interactions.
This suggests LMs may potentially serve as more useful tools for linguistic annotation, theory testing, and discovery.
arXiv Detail & Related papers (2023-05-29T16:24:01Z) - Optimization Techniques for Unsupervised Complex Table Reasoning via Self-Training Framework [5.351873055148804]
Self-training framework generates diverse synthetic data with complex logic.
We optimize the procedure using a "Table-Text Manipulator" to handle joint table-text reasoning scenarios.
UCTRST achieves above 90% of the supervised model performance on different tasks and domains.
arXiv Detail & Related papers (2022-12-20T09:15:03Z) - Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent
Semantic Parsing [52.24507547010127]
Cross-domain context-dependent semantic parsing is a new focus of research.
We present a dynamic graph framework that effectively modelling contextual utterances, tokens, database schemas, and their complicated interaction as the conversation proceeds.
The proposed framework outperforms all existing models by large margins, achieving new state-of-the-art performance on two large-scale benchmarks.
arXiv Detail & Related papers (2021-01-05T18:11:29Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
We present GraPPa, an effective pre-training approach for table semantic parsing.
We construct synthetic question-pairs over high-free tables via a synchronous context-free grammar.
To maintain the model's ability to represent real-world data, we also include masked language modeling.
arXiv Detail & Related papers (2020-09-29T08:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.