論文の概要: iTBLS: A Dataset of Interactive Conversations Over Tabular Information
- arxiv url: http://arxiv.org/abs/2404.12580v2
- Date: Tue, 19 Aug 2025 01:43:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-20 15:36:31.299511
- Title: iTBLS: A Dataset of Interactive Conversations Over Tabular Information
- Title(参考訳): ITBLS: 語彙情報に関する対話型会話のデータセット
- Authors: Anirudh Sundar, Christopher Richardson, Adar Avsian, Larry Heck,
- Abstract要約: ITBLSデータセットは、解釈、修正、生成という3種類の表型タスクで構成されている。
本稿では,質問応答として表計算操作を再構築する新しい枠組みを提案する。
提案手法は, ITBLS に基づくシーケンス・ツー・シーケンス・モデリングのベースライン上でのタスクを改良する。
新たなアプローチでは、Exact-Matchの精度が13%向上し、BERTScoresが16%向上した。
- 参考スコア(独自算出の注目度): 2.9665568096804846
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces Interactive Tables (iTBLS), a dataset of interactive conversations that focuses on natural-language manipulation of tabular information sourced from academic pre-prints on ArXiv. The iTBLS dataset consists of three types of tabular tasks -- interpretation, modification, and generation. Interpretation focuses on tabular understanding, modification focuses on manipulating tabular information, and generation focuses on the addition of new natural-language evidence. In addition, the paper presents a novel framework that reformulates tabular operations as question-answering, where an appropriate question is formulated based on the nature of interaction and the question is answered using the user request as evidence. The developed approach results in an improvement on all tasks on a sequence-to-sequence modeling baseline on iTBLS. In addition, the question-answering-based reformulation is applied to datasets from prior work for the text-to-table task where textual paragraphs are summarized into tables. The novel approach results in up to 13% improvement in Exact-Match accuracy and up to 16% improvement in BERTScores compared to the prior state-of-the-art.
- Abstract(参考訳): 本稿では,ArXivの学術的事前印刷から得られた表情報の自然言語操作に焦点を当てた対話型対話のデータセットであるInteractive Tables(iTBLS)を紹介する。
ITBLSデータセットは、解釈、修正、生成という3種類の表型タスクで構成されている。
解釈は表の理解に焦点を当て、修正は表の情報を操作し、生成は新たな自然言語の証拠を追加することに焦点を当てる。
さらに,対話の性質に基づいて適切な質問を定式化し,ユーザの要求を証拠として回答する,表計算操作を質問応答として再構築する新しい枠組みを提案する。
提案手法は, ITBLS に基づくシーケンス・ツー・シーケンス・モデリングのベースライン上でのタスクを改良する。
さらに,質問文を表にまとめるテキスト・ツー・テーブルタスクの先行作業から得られたデータセットに対して,質問文に基づく再構成を適用した。
新たなアプローチでは、Exact-Matchの精度が13%向上し、BERTScoresが16%向上した。
関連論文リスト
- Scalable Representation Learning for Multimodal Tabular Transactions [14.18267117657451]
これらの課題に対して、革新的でスケーラブルなソリューションを提示します。
トランザクションとテキストのモダリティをインターリーブするパラメータ効率の良いデコーダを提案する。
我々は,大規模な合成決済トランザクションデータセット上でのソリューションの有効性を検証した。
論文 参考訳(メタデータ) (2024-10-10T12:18:42Z) - H-STAR: LLM-driven Hybrid SQL-Text Adaptive Reasoning on Tables [56.73919743039263]
本稿では,2段階のプロセスにシンボル的アプローチと意味的アプローチ(テキスト的アプローチ)を統合し,制約に対処する新しいアルゴリズムを提案する。
実験の結果,H-STARは3つの質問応答(QA)と事実検証データセットにおいて,最先端の手法を大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (2024-06-29T21:24:19Z) - Making Pre-trained Language Models Great on Tabular Prediction [50.70574370855663]
ディープニューラルネットワーク(DNN)の転送性は、画像および言語処理において著しく進歩している。
本稿では,表型データ予測のための訓練済みLMであるTP-BERTaを提案する。
新たな相対等級トークン化では、スカラー数値の特徴値を細分化した高次元トークンに変換し、特徴値と対応する特徴名を統合する。
論文 参考訳(メタデータ) (2024-03-04T08:38:56Z) - Guiding Language Model Reasoning with Planning Tokens [122.43639723387516]
大規模言語モデル(LLM)は、最近、複雑な推論タスクを実行する能力に対して、かなりの関心を集めている。
より構造的なチェーン・オブ・シークレット・ステップの創出を促す階層的な生成手法を提案する。
提案手法では、トレーニング可能なパラメータ(0.001%)の無視可能な増加が必要であり、完全な微調整か、よりパラメータ効率の良いスキームで適用することができる。
論文 参考訳(メタデータ) (2023-10-09T13:29:37Z) - Syntax and Semantics Meet in the "Middle": Probing the Syntax-Semantics
Interface of LMs Through Agentivity [68.8204255655161]
このような相互作用を探索するためのケーススタディとして,作用性のセマンティックな概念を提示する。
これは、LMが言語アノテーション、理論テスト、発見のためのより有用なツールとして役立つ可能性を示唆している。
論文 参考訳(メタデータ) (2023-05-29T16:24:01Z) - Optimization Techniques for Unsupervised Complex Table Reasoning via Self-Training Framework [5.351873055148804]
自己学習フレームワークは複雑な論理を持つ多様な合成データを生成する。
我々は「テーブル・テキスト・マニピュレータ(Table-Text Manipulator)」を用いて、共同テーブル・テキスト推論シナリオの処理を最適化する。
UCTRSTは、異なるタスクやドメインにおける教師付きモデルパフォーマンスの90%以上を達成する。
論文 参考訳(メタデータ) (2022-12-20T09:15:03Z) - Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent
Semantic Parsing [52.24507547010127]
ドメイン間コンテキスト依存のセマンティック解析は研究の新たな焦点である。
本稿では,コンテキストの発話,トークン,データベーススキーマ,会話の進行に伴う複雑なインタラクションを効果的にモデル化する動的グラフフレームワークを提案する。
提案したフレームワークは既存のモデルを大きなマージンで上回り、2つの大規模ベンチマークで新しい最先端性能を達成する。
論文 参考訳(メタデータ) (2021-01-05T18:11:29Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
テーブルセマンティック解析のための効果的な事前学習手法GraPPaを提案する。
我々は、同期文脈自由文法を用いて、高自由度テーブル上に合成質問ペアを構築する。
実世界のデータを表現できるモデルの能力を維持するため、マスキング言語モデリングも含んでいる。
論文 参考訳(メタデータ) (2020-09-29T08:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。