論文の概要: Scalable Representation Learning for Multimodal Tabular Transactions
- arxiv url: http://arxiv.org/abs/2410.07851v1
- Date: Thu, 10 Oct 2024 12:18:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 14:25:50.458123
- Title: Scalable Representation Learning for Multimodal Tabular Transactions
- Title(参考訳): マルチモーダルタブラリトランザクションのためのスケーラブル表現学習
- Authors: Natraj Raman, Sumitra Ganesh, Manuela Veloso,
- Abstract要約: これらの課題に対して、革新的でスケーラブルなソリューションを提示します。
トランザクションとテキストのモダリティをインターリーブするパラメータ効率の良いデコーダを提案する。
我々は,大規模な合成決済トランザクションデータセット上でのソリューションの有効性を検証した。
- 参考スコア(独自算出の注目度): 14.18267117657451
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models (LLMs) are primarily designed to understand unstructured text. When directly applied to structured formats such as tabular data, they may struggle to discern inherent relationships and overlook critical patterns. While tabular representation learning methods can address some of these limitations, existing efforts still face challenges with sparse high-cardinality fields, precise numerical reasoning, and column-heavy tables. Furthermore, leveraging these learned representations for downstream tasks through a language based interface is not apparent. In this paper, we present an innovative and scalable solution to these challenges. Concretely, our approach introduces a multi-tier partitioning mechanism that utilizes power-law dynamics to handle large vocabularies, an adaptive quantization mechanism to impose priors on numerical continuity, and a distinct treatment of core-columns and meta-information columns. To facilitate instruction tuning on LLMs, we propose a parameter efficient decoder that interleaves transaction and text modalities using a series of adapter layers, thereby exploiting rich cross-task knowledge. We validate the efficacy of our solution on a large-scale dataset of synthetic payments transactions.
- Abstract(参考訳): 大規模言語モデル(LLM)は、主に構造化されていないテキストを理解するために設計されている。
表形式のデータのような構造化形式に直接適用した場合、それらは固有の関係を識別したり、批判的なパターンを見落としたりするのに苦労する。
表表表現学習法はこれらの制限のいくつかに対処できるが、既存の取り組みは依然として、疎度の高次心電図、正確な数値推論、列重みテーブルといった課題に直面している。
さらに、これらの学習された表現を言語ベースのインターフェイスを通じて下流タスクに活用することは明らかではない。
本稿では,これらの課題に対して,革新的でスケーラブルなソリューションを提案する。
具体的には,多層分割機構を導入し,多層分割機構を用いて大語彙を処理し,数値的連続性を優先する適応量子化機構を導入し,コアカラムとメタ情報列を別々に処理する。
LLMの命令チューニングを容易にするために,一連のアダプタ層を用いてトランザクションとテキストのモダリティをインターリーブするパラメータ効率の良いデコーダを提案する。
我々は,大規模な合成決済トランザクションデータセット上でのソリューションの有効性を検証した。
関連論文リスト
- TabulaX: Leveraging Large Language Models for Multi-Class Table Transformations [8.072353085704627]
本稿では,多クラス変換にLarge Language Models(LLM)を利用する新しいフレームワークであるTabulaXを紹介する。
本研究では,TabulaXが既存の最先端手法よりも精度が高く,より広範な変換クラスをサポートし,効率的に適用可能な解釈可能な変換を生成することを示す。
論文 参考訳(メタデータ) (2024-11-26T05:00:23Z) - TableTime: Reformulating Time Series Classification as Zero-Shot Table Understanding via Large Language Models [54.44272772296578]
大規模言語モデル (LLM) は多変量時系列分類において有効であることを示した。
LLM は LLM の潜在空間内の時系列の埋め込みを直接コードし、LLM の意味空間と一致させる。
MTSCを表理解タスクとして再編成するテーブルタイムを提案する。
論文 参考訳(メタデータ) (2024-11-24T07:02:32Z) - Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
大きな言語モデル(LLM)は、常識的推論と対話的な意思決定において強力な能力を示す。
近年,制御フローなどのコード・アジャセント技術を用いてLCM出力を構造化し,計画性能を向上させる技術が提案されている。
完全コード表現で動的なLEM計画手法であるREPL-Planを提案する。
論文 参考訳(メタデータ) (2024-11-21T04:23:17Z) - TabDeco: A Comprehensive Contrastive Framework for Decoupled Representations in Tabular Data [5.98480077860174]
本研究では,行と列をまたいだアテンションベースの符号化手法であるTabDecoを紹介する。
革新的な機能の分離によって、TabDecoは既存のディープラーニングメソッドを一貫して上回っている。
論文 参考訳(メタデータ) (2024-11-17T18:42:46Z) - Structure Guided Prompt: Instructing Large Language Model in Multi-Step
Reasoning by Exploring Graph Structure of the Text [44.81698187939784]
本稿では,大規模言語モデル(LLM)の多段階推論能力向上を目的としたフレームワークであるStructure Guided Promptを紹介する。
実験の結果,このフレームワークはLLMの推論能力を大幅に向上し,より広い範囲の自然言語シナリオを拡張できることがわかった。
論文 参考訳(メタデータ) (2024-02-20T22:56:23Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
本稿では,既存のMLLMのモデル構成による新しいパラダイムを提案する。
我々の基本的な実装であるNaiveMCは、モダリティエンコーダを再利用し、LLMパラメータをマージすることで、このパラダイムの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-20T06:38:10Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
テーブルベースタスクにおいて,大規模言語モデル(LLM)を効果的に活用するための汎用プリプロセッサスイートとして,TAP4LLMを提案する。
1)大きなテーブルをクエリセマンティクスに基づいて管理可能なサブテーブルに分解するテーブルサンプリング、(2)外部ソースやモデルから追加の知識でテーブルを拡張するテーブル拡張、(3)テーブルパッキングとシリアライゼーションによりテーブルをLLMの理解に適したさまざまなフォーマットに変換する。
論文 参考訳(メタデータ) (2023-12-14T15:37:04Z) - Guiding Language Model Reasoning with Planning Tokens [122.43639723387516]
大規模言語モデル(LLM)は、最近、複雑な推論タスクを実行する能力に対して、かなりの関心を集めている。
より構造的なチェーン・オブ・シークレット・ステップの創出を促す階層的な生成手法を提案する。
提案手法では、トレーニング可能なパラメータ(0.001%)の無視可能な増加が必要であり、完全な微調整か、よりパラメータ効率の良いスキームで適用することができる。
論文 参考訳(メタデータ) (2023-10-09T13:29:37Z) - Demystifying Embedding Spaces using Large Language Models [26.91321899603332]
本稿では,埋め込みをより解釈しやすく,広く活用する上での課題に対処する。
埋め込みを直接操作するためにLarge Language Models(LLMs)を用いることで、抽象ベクトルを理解可能な物語に変換する。
提案手法は,概念アクティベーションベクトル(CAV)の強化,新しい組み込みエンティティの通信,レコメンデーションシステムにおけるユーザの好みのデコードなど,多種多様なタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-06T05:27:28Z) - The first step is the hardest: Pitfalls of Representing and Tokenizing
Temporal Data for Large Language Models [10.414206635385632]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な一般化を実証している。
ウェアラブルや電子健康記録から得られたデータなど、数値データや時間データをこれらのモデルに入力する際に、顕著な障害が発生する。
モバイルヘルスセンシングなどの人間中心のタスクにLLMを用いた最近の研究について論じるとともに、一般的なLLMが時間データを誤ってトークン化していることを示すケーススタディを示す。
論文 参考訳(メタデータ) (2023-09-12T13:51:29Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
自動データ拡張のための自己模倣学習フェーズを組み込むことにより,標準最大確率推定(MLE)パラダイムを改善することを提案する。
既存の文レベルの拡張戦略とは異なり,本手法はより汎用的で,任意のMLEベースの訓練手順に容易に適応できる。
論文 参考訳(メタデータ) (2021-01-02T01:15:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。