Risk Bounds for Mixture Density Estimation on Compact Domains via the $h$-Lifted Kullback--Leibler Divergence
- URL: http://arxiv.org/abs/2404.12586v1
- Date: Fri, 19 Apr 2024 02:31:34 GMT
- Title: Risk Bounds for Mixture Density Estimation on Compact Domains via the $h$-Lifted Kullback--Leibler Divergence
- Authors: Mark Chiu Chong, Hien Duy Nguyen, TrungTin Nguyen,
- Abstract summary: We introduce the $h$-lifted Kullback--Leibler (KL) divergence as a generalization of the standard KL divergence.
We develop a procedure for the computation of the corresponding maximum $h$-lifted likelihood estimators.
- Score: 2.8074364079901017
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of estimating probability density functions based on sample data, using a finite mixture of densities from some component class. To this end, we introduce the $h$-lifted Kullback--Leibler (KL) divergence as a generalization of the standard KL divergence and a criterion for conducting risk minimization. Under a compact support assumption, we prove an $\mc{O}(1/{\sqrt{n}})$ bound on the expected estimation error when using the $h$-lifted KL divergence, which extends the results of Rakhlin et al. (2005, ESAIM: Probability and Statistics, Vol. 9) and Li and Barron (1999, Advances in Neural Information ProcessingSystems, Vol. 12) to permit the risk bounding of density functions that are not strictly positive. We develop a procedure for the computation of the corresponding maximum $h$-lifted likelihood estimators ($h$-MLLEs) using the Majorization-Maximization framework and provide experimental results in support of our theoretical bounds.
Related papers
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Variance Reduction for the Independent Metropolis Sampler [11.074080383657453]
We prove that if $pi$ is close enough under KL divergence to another density $q$, an independent sampler that obtains samples from $pi$ achieves smaller variance than i.i.d. sampling from $pi$.
We propose an adaptive independent Metropolis algorithm that adapts the proposal density such that its KL divergence with the target is being reduced.
arXiv Detail & Related papers (2024-06-25T16:38:53Z) - Nonparametric logistic regression with deep learning [1.2509746979383698]
In the nonparametric logistic regression, the Kullback-Leibler divergence could diverge easily.
Instead of analyzing the excess risk itself, it suffices to show the consistency of the maximum likelihood estimator.
As an important application, we derive the convergence rates of the NPMLE with deep neural networks.
arXiv Detail & Related papers (2024-01-23T04:31:49Z) - Sparse PCA with Oracle Property [115.72363972222622]
We propose a family of estimators based on the semidefinite relaxation of sparse PCA with novel regularizations.
We prove that, another estimator within the family achieves a sharper statistical rate of convergence than the standard semidefinite relaxation of sparse PCA.
arXiv Detail & Related papers (2023-12-28T02:52:54Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Unified Perspective on Probability Divergence via Maximum Likelihood
Density Ratio Estimation: Bridging KL-Divergence and Integral Probability
Metrics [15.437224275494838]
We show that the KL-divergence and the IPMs can be represented as maximal likelihoods differing only by sampling schemes.
We propose a novel class of probability divergences, called the Density Ratio Metrics (DRMs), that interpolates the KL-divergence and the IPMs.
In addition to these findings, we also introduce some applications of the DRMs, such as DRE and generative adversarial networks.
arXiv Detail & Related papers (2022-01-31T11:15:04Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
We use kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process.
We derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator.
We prove minimax lower bounds over sub-classes of MRPs.
arXiv Detail & Related papers (2021-09-24T14:48:20Z) - Distributionally Robust Parametric Maximum Likelihood Estimation [13.09499764232737]
We propose a distributionally robust maximum likelihood estimator that minimizes the worst-case expected log-loss uniformly over a parametric nominal distribution.
Our novel robust estimator also enjoys statistical consistency and delivers promising empirical results in both regression and classification tasks.
arXiv Detail & Related papers (2020-10-11T19:05:49Z) - Estimation in Tensor Ising Models [5.161531917413708]
We consider the problem of estimating the natural parameter of the $p$-tensor Ising model given a single sample from the distribution on $N$ nodes.
In particular, we show the $sqrt N$-consistency of the MPL estimate in the $p$-spin Sherrington-Kirkpatrick (SK) model.
We derive the precise fluctuations of the MPL estimate in the special case of the $p$-tensor Curie-Weiss model.
arXiv Detail & Related papers (2020-08-29T00:06:58Z) - Sharp Statistical Guarantees for Adversarially Robust Gaussian
Classification [54.22421582955454]
We provide the first result of the optimal minimax guarantees for the excess risk for adversarially robust classification.
Results are stated in terms of the Adversarial Signal-to-Noise Ratio (AdvSNR), which generalizes a similar notion for standard linear classification to the adversarial setting.
arXiv Detail & Related papers (2020-06-29T21:06:52Z) - Distributionally Robust Bayesian Quadrature Optimization [60.383252534861136]
We study BQO under distributional uncertainty in which the underlying probability distribution is unknown except for a limited set of its i.i.d. samples.
A standard BQO approach maximizes the Monte Carlo estimate of the true expected objective given the fixed sample set.
We propose a novel posterior sampling based algorithm, namely distributionally robust BQO (DRBQO) for this purpose.
arXiv Detail & Related papers (2020-01-19T12:00:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.