論文の概要: Detecting Out-Of-Distribution Earth Observation Images with Diffusion Models
- arxiv url: http://arxiv.org/abs/2404.12667v1
- Date: Fri, 19 Apr 2024 07:07:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 15:55:43.288074
- Title: Detecting Out-Of-Distribution Earth Observation Images with Diffusion Models
- Title(参考訳): 拡散モデルによる外部分布地球観測画像の検出
- Authors: Georges Le Bellier, Nicolas Audebert,
- Abstract要約: 本研究では,拡散モデルの再構成誤差がリモートセンシング画像の非教師外分布検出器として有効であることを示す。
本稿では,拡散モデルの確率フローODEを用いた新しい再構成ベースのスコアラODEEDを紹介する。
遠隔センシングにおける異常検出のための生成モデルのより良い利用に向けた道を開くことを目的としている。
- 参考スコア(独自算出の注目度): 2.1178416840822027
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Earth Observation imagery can capture rare and unusual events, such as disasters and major landscape changes, whose visual appearance contrasts with the usual observations. Deep models trained on common remote sensing data will output drastically different features for these out-of-distribution samples, compared to those closer to their training dataset. Detecting them could therefore help anticipate changes in the observations, either geographical or environmental. In this work, we show that the reconstruction error of diffusion models can effectively serve as unsupervised out-of-distribution detectors for remote sensing images, using them as a plausibility score. Moreover, we introduce ODEED, a novel reconstruction-based scorer using the probability-flow ODE of diffusion models. We validate it experimentally on SpaceNet 8 with various scenarios, such as classical OOD detection with geographical shift and near-OOD setups: pre/post-flood and non-flooded/flooded image recognition. We show that our ODEED scorer significantly outperforms other diffusion-based and discriminative baselines on the more challenging near-OOD scenarios of flood image detection, where OOD images are close to the distribution tail. We aim to pave the way towards better use of generative models for anomaly detection in remote sensing.
- Abstract(参考訳): 地球観測画像は、災害や大きな景観の変化のような稀で珍しい出来事を捉え、その外観は通常の観測と対照的である。
一般的なリモートセンシングデータに基づいてトレーニングされたディープモデルは、トレーニングデータセットに近いものに比べて、これらのアウト・オブ・ディストリビューションサンプルに対して大幅に異なる特徴を出力する。
そのため、それらを検出することで、地理的または環境的な観測の変化を予測できる。
本研究では,拡散モデルの再構成誤差がリモートセンシング画像の教師なしアウト・オブ・ディストリビューション検出器として有効であることを示す。
さらに,拡散モデルの確率フローODEを用いた新しい再構成ベースのスコアラであるODEEDを導入する。
地理的シフトを伴う古典的なOOD検出や,前・後・後・非フロード画像認識などの近OOD設定など,さまざまなシナリオでSpaceNet 8上で実験的に検証する。
我々は,OOD画像が分布尾に近接する洪水画像検出の難易度の高いシナリオに対して,我々のODEEDスコアラが他の拡散ベースおよび識別ベースラインよりも有意に優れていることを示す。
遠隔センシングにおける異常検出のための生成モデルのより良い利用に向けた道を開くことを目的としている。
関連論文リスト
- Can Your Generative Model Detect Out-of-Distribution Covariate Shift? [2.0144831048903566]
条件付き正規化フロー(cNFs)を用いたOODセンサデータ検出のための新しい手法を提案する。
CIFAR10 対 CIFAR10-C と ImageNet200 対 ImageNet200-C では,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-09-04T19:27:56Z) - Exploiting Diffusion Prior for Out-of-Distribution Detection [11.11093497717038]
堅牢な機械学習モデルをデプロイするには、アウト・オブ・ディストリビューション(OOD)検出が不可欠だ。
拡散モデルの生成能力とCLIPの強力な特徴抽出能力を活用する新しいOOD検出手法を提案する。
論文 参考訳(メタデータ) (2024-06-16T23:55:25Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Projection Regret: Reducing Background Bias for Novelty Detection via
Diffusion Models [72.07462371883501]
本研究では,非意味情報のバイアスを緩和する効率的な新規性検出手法であるemphProjection Regret(PR)を提案する。
PRは、テスト画像とその拡散ベースの投影の間の知覚距離を計算し、異常を検出する。
拡張実験により、PRは生成モデルに基づく新規性検出手法の先行技術よりも有意なマージンで優れていることが示された。
論文 参考訳(メタデータ) (2023-12-05T09:44:47Z) - Learning a Cross-modality Anomaly Detector for Remote Sensing Imagery [21.444315419064882]
リモートセンシング異常検知器は、地球観測の潜在的な標的として、背景から逸脱する物体を見つけることができる。
現在の異常検出器は特定の背景分布を学習することを目的としており、訓練されたモデルは見えない画像に転送することはできない。
本研究では,異なる背景分布から一貫した偏差距離への学習目標変換を利用する。
論文 参考訳(メタデータ) (2023-10-11T14:07:05Z) - Detecting Images Generated by Deep Diffusion Models using their Local
Intrinsic Dimensionality [8.968599131722023]
拡散モデルは驚くほどリアルな画像の視覚合成に成功している。
これにより、悪意のある目的のために、彼らの可能性に対する強い懸念が持ち上がる。
合成画像の自動検出に軽量な多重局所固有次元法(multiLID)を提案する。
論文 参考訳(メタデータ) (2023-07-05T15:03:10Z) - Deceptive-NeRF/3DGS: Diffusion-Generated Pseudo-Observations for High-Quality Sparse-View Reconstruction [60.52716381465063]
我々は,限られた入力画像のみを用いて,スパースビュー再構成を改善するために,Deceptive-NeRF/3DGSを導入した。
具体的には,少数視点再構成によるノイズ画像から高品質な擬似観測へ変換する,偽拡散モデルを提案する。
本システムでは,拡散生成擬似観測をトレーニング画像集合に徐々に組み込んで,スパース入力観測を5倍から10倍に高めている。
論文 参考訳(メタデータ) (2023-05-24T14:00:32Z) - DIRE for Diffusion-Generated Image Detection [128.95822613047298]
拡散再構成誤り(DIRE)という新しい表現を提案する。
DIREは、予め訓練された拡散モデルにより、入力画像とその再構成画像間の誤差を測定する。
DIREは生成されたイメージと実際のイメージを区別するためのブリッジとして機能する、というヒントを提供する。
論文 参考訳(メタデータ) (2023-03-16T13:15:03Z) - Why Normalizing Flows Fail to Detect Out-of-Distribution Data [51.552870594221865]
正規化フローは、イン・オブ・ディストリビューションデータとアウト・オブ・ディストリビューションデータの区別に失敗する。
フローは局所的な画素相関と画像からラテンス空間への変換を学習する。
フロー結合層のアーキテクチャを変更することで、ターゲットデータのセマンティック構造を学ぶためのフローに偏りがあることが示される。
論文 参考訳(メタデータ) (2020-06-15T17:00:01Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。