論文の概要: Exploring Interactive Semantic Alignment for Efficient HOI Detection with Vision-language Model
- arxiv url: http://arxiv.org/abs/2404.12678v2
- Date: Mon, 6 May 2024 15:16:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 22:46:58.363601
- Title: Exploring Interactive Semantic Alignment for Efficient HOI Detection with Vision-language Model
- Title(参考訳): 視覚言語モデルを用いた効果的なHOI検出のための対話型セマンティックアライメントの探索
- Authors: Jihao Dong, Renjie Pan, Hua Yang,
- Abstract要約: ISA-HOIはCLIPからの知識を広範囲に活用し,視覚的特徴とテキスト的特徴の対話的意味論を整合させる。
本手法は, HICO-DETとV-COCOのベンチマークにおいて, トレーニングエポックがはるかに少なく, ゼロショット環境下での最先端性能を向上する。
- 参考スコア(独自算出の注目度): 3.3772986620114387
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human-Object Interaction (HOI) detection aims to localize human-object pairs and comprehend their interactions. Recently, two-stage transformer-based methods have demonstrated competitive performance. However, these methods frequently focus on object appearance features and ignore global contextual information. Besides, vision-language model CLIP which effectively aligns visual and text embeddings has shown great potential in zero-shot HOI detection. Based on the former facts, We introduce a novel HOI detector named ISA-HOI, which extensively leverages knowledge from CLIP, aligning interactive semantics between visual and textual features. We first extract global context of image and local features of object to Improve interaction Features in images (IF). On the other hand, we propose a Verb Semantic Improvement (VSI) module to enhance textual features of verb labels via cross-modal fusion. Ultimately, our method achieves competitive results on the HICO-DET and V-COCO benchmarks with much fewer training epochs, and outperforms the state-of-the-art under zero-shot settings.
- Abstract(参考訳): 人間-物体相互作用(Human-Object Interaction、HOI)は、対象対を局所化し、その相互作用を理解することを目的としている。
近年,二段変圧器を用いた手法が競争性能を実証している。
しかし,これらの手法はしばしばオブジェクトの外観に焦点を合わせ,グローバルな文脈情報を無視する。
さらに、視覚とテキストの埋め込みを効果的に整合させる視覚言語モデルCLIPは、ゼロショットHOI検出において大きな可能性を示している。
従来の事実に基づいて,CLIPからの知識を広範囲に活用し,視覚的特徴とテキスト的特徴の対話的意味論を整合させる新しいHOI検出器ISA-HOIを導入する。
まず、画像中のインタラクション機能を改善するために、画像のグローバルなコンテキストとオブジェクトの局所的な特徴を抽出する。
一方,動詞ラベルのテキスト的特徴をクロスモーダル融合により拡張するVerb Semantic Improvement (VSI) モジュールを提案する。
最終的に, HICO-DETとV-COCOのベンチマークにおいて, トレーニングのエポックスを大幅に減らし, ゼロショット環境での最先端性能を向上する。
関連論文リスト
- Spatio-Temporal Context Prompting for Zero-Shot Action Detection [13.22912547389941]
本稿では,視覚言語モデルの豊富な知識を効果的に活用し,対人インタラクションを実現する手法を提案する。
同時に複数の人物による異なる行動を認識するという課題に対処するために,興味あるトークンスポッティング機構を設計する。
提案手法は,従来の手法に比べて優れた結果を得ることができ,さらにマルチアクションビデオに拡張することができる。
論文 参考訳(メタデータ) (2024-08-28T17:59:05Z) - Towards Zero-shot Human-Object Interaction Detection via Vision-Language
Integration [14.678931157058363]
本稿では,ゼロショットHOI検出を改善するために,視覚言語モデルの知識を効果的に統合する新しいフレームワーク「KI2HOI」を提案する。
より包括的な視覚表現を生成するための効果的な付加的自己認識機構を開発する。
我々のモデルは、様々なゼロショットおよびフル教師付き設定において、以前の手法よりも優れています。
論文 参考訳(メタデータ) (2024-03-12T02:07:23Z) - Disentangled Interaction Representation for One-Stage Human-Object
Interaction Detection [70.96299509159981]
ヒューマン・オブジェクト・インタラクション(HOI)検出は、人間中心の画像理解のコアタスクである。
最近のワンステージ手法では、対話予測に有用な画像ワイドキューの収集にトランスフォーマーデコーダを採用している。
従来の2段階の手法は、非絡み合いで説明可能な方法で相互作用特徴を構成する能力から大きな恩恵を受ける。
論文 参考訳(メタデータ) (2023-12-04T08:02:59Z) - Enhancing HOI Detection with Contextual Cues from Large Vision-Language Models [56.257840490146]
ConCueは、HOI検出における視覚的特徴抽出を改善するための新しいアプローチである。
コンテクストキューをインスタンスと相互作用検出器の両方に統合するマルチトウワーアーキテクチャを用いたトランスフォーマーベースの特徴抽出モジュールを開発した。
論文 参考訳(メタデータ) (2023-11-26T09:11:32Z) - HOICLIP: Efficient Knowledge Transfer for HOI Detection with
Vision-Language Models [30.279621764192843]
人間-物体相互作用(Human-Object Interaction、HOI)は、人-物体のペアを局所化し、その相互作用を認識することを目的としている。
対照的な言語-画像事前学習(CLIP)は、HOI検出器に先立って相互作用を提供する大きな可能性を示している。
本稿では,CLIPから事前知識を効率的に抽出し,より優れた一般化を実現する新しいHOI検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T07:54:54Z) - Fine-Grained Semantically Aligned Vision-Language Pre-Training [151.7372197904064]
大規模な視覚言語による事前学習は、幅広い下流タスクにおいて顕著な進歩を見せている。
既存の手法は主に、画像とテキストのグローバルな表現の類似性によって、モーダル間のアライメントをモデル化する。
ゲーム理論的相互作用の新たな視点から, 微粒なセマンティックアライメントを学習する, 微粒なセマンティックなvisiOn-langUage PrEトレーニングフレームワークであるLOを導入する。
論文 参考訳(メタデータ) (2022-08-04T07:51:48Z) - COTS: Collaborative Two-Stream Vision-Language Pre-Training Model for
Cross-Modal Retrieval [59.15034487974549]
画像テキスト検索のための新しいコラボレーティブな2ストリームビジョン言語事前学習モデルCOTSを提案する。
我々のCOTSは,2ストリーム方式の中で最も高い性能を達成し,推論の速度は10,800倍に向上した。
重要なことは、我々のCOTSはテキストからビデオへの検索にも適用でき、広く使われているMSR-VTTデータセットに新たな最先端技術をもたらすことである。
論文 参考訳(メタデータ) (2022-04-15T12:34:47Z) - Phrase-Based Affordance Detection via Cyclic Bilateral Interaction [17.022853987801877]
我々は、視覚言語の観点から、手当を知覚し、困難なフレーズベースの手当検出問題を考察する。
言語と視覚の特徴を段階的に整合させるために,循環的二元整合性向上ネットワーク(CBCE-Net)を提案する。
具体的には、CBCE-Netは、視覚と言語の共通した特徴を進歩的に更新する相互指導型視覚言語モジュールと、循環的に物体との相互作用の認識を容易にする循環的相互作用モジュール(CIM)から構成される。
論文 参考訳(メタデータ) (2022-02-24T13:02:27Z) - Exploiting Scene Graphs for Human-Object Interaction Detection [81.49184987430333]
ヒューマン・オブジェクト・インタラクション(Human-Object Interaction,HOI)検出は、人間とオブジェクト間のインタラクションのローカライズと認識を目的とした、基本的な視覚的タスクである。
そこで本研究では,シーングラフを用いたヒューマン・オブジェクト・インタラクション(SG2HOI)検出タスクのための新しい手法を提案する。
SG2HOIはSG情報を2つの方法で組み込む:(1)シーングラフを世界的文脈の手がかりに埋め込み、シーン固有の環境コンテキストとして機能し、(2)オブジェクトの近傍から関係を収集し、それらを対話に転送するリレーショナル・アウェア・メッセージ・パッシング・モジュールを構築する。
論文 参考訳(メタデータ) (2021-08-19T09:40:50Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
本稿では,HOIを推論するインタラクティブグラフ(Interactive Graph, in-Graph)という,グラフに基づくインタラクティブ推論モデルを提案する。
In-GraphNet と呼ばれる HOI を検出するための新しいフレームワークを構築した。
私たちのフレームワークはエンドツーエンドのトレーニングが可能で、人間のポーズのような高価なアノテーションはありません。
論文 参考訳(メタデータ) (2020-07-14T09:29:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。