MMDocIR: Benchmarking Multi-Modal Retrieval for Long Documents
- URL: http://arxiv.org/abs/2501.08828v1
- Date: Wed, 15 Jan 2025 14:30:13 GMT
- Title: MMDocIR: Benchmarking Multi-Modal Retrieval for Long Documents
- Authors: Kuicai Dong, Yujing Chang, Xin Deik Goh, Dexun Li, Ruiming Tang, Yong Liu,
- Abstract summary: This work introduces a new benchmark, named as MMDocIR, encompassing two distinct tasks: page-level and layout-level retrieval.
The MMDocIR benchmark comprises a rich dataset featuring expertly annotated labels for 1,685 questions and bootstrapped labels for 173,843 questions.
- Score: 26.39534684408116
- License:
- Abstract: Multi-modal document retrieval is designed to identify and retrieve various forms of multi-modal content, such as figures, tables, charts, and layout information from extensive documents. Despite its significance, there is a notable lack of a robust benchmark to effectively evaluate the performance of systems in multi-modal document retrieval. To address this gap, this work introduces a new benchmark, named as MMDocIR, encompassing two distinct tasks: page-level and layout-level retrieval. The former focuses on localizing the most relevant pages within a long document, while the latter targets the detection of specific layouts, offering a more fine-grained granularity than whole-page analysis. A layout can refer to a variety of elements such as textual paragraphs, equations, figures, tables, or charts. The MMDocIR benchmark comprises a rich dataset featuring expertly annotated labels for 1,685 questions and bootstrapped labels for 173,843 questions, making it a pivotal resource for advancing multi-modal document retrieval for both training and evaluation. Through rigorous experiments, we reveal that (i) visual retrievers significantly outperform their text counterparts, (ii) MMDocIR train set can effectively benefit the training process of multi-modal document retrieval and (iii) text retrievers leveraging on VLM-text perform much better than those using OCR-text. These findings underscores the potential advantages of integrating visual elements for multi-modal document retrieval.
Related papers
- LongDocURL: a Comprehensive Multimodal Long Document Benchmark Integrating Understanding, Reasoning, and Locating [40.44974704748952]
Large vision language models (LVLMs) have improved the document understanding capabilities remarkably.
Existing document understanding benchmarks have been limited to handling only a small number of pages.
We develop a semi-automated construction pipeline and collect 2,325 high-quality question-answering pairs, covering more than 33,000 pages of documents.
arXiv Detail & Related papers (2024-12-24T13:39:32Z) - VisDoM: Multi-Document QA with Visually Rich Elements Using Multimodal Retrieval-Augmented Generation [100.06122876025063]
This paper introduces VisDoMBench, the first comprehensive benchmark designed to evaluate QA systems in multi-document settings.
We propose VisDoMRAG, a novel multimodal Retrieval Augmented Generation (RAG) approach that simultaneously utilizes visual and textual RAG.
arXiv Detail & Related papers (2024-12-14T06:24:55Z) - M-Longdoc: A Benchmark For Multimodal Super-Long Document Understanding And A Retrieval-Aware Tuning Framework [75.95430061891828]
We introduce M-LongDoc, a benchmark of 851 samples, and an automated framework to evaluate the performance of large multimodal models.
We propose a retrieval-aware tuning approach for efficient and effective multimodal document reading.
arXiv Detail & Related papers (2024-11-09T13:30:38Z) - M3DocRAG: Multi-modal Retrieval is What You Need for Multi-page Multi-document Understanding [63.33447665725129]
We introduce M3DocRAG, a novel multi-modal RAG framework that flexibly accommodates various document contexts.
M3DocRAG can efficiently handle single or many documents while preserving visual information.
We also present M3DocVQA, a new benchmark for evaluating open-domain DocVQA over 3,000+ PDF documents with 40,000+ pages.
arXiv Detail & Related papers (2024-11-07T18:29:38Z) - MM-Embed: Universal Multimodal Retrieval with Multimodal LLMs [78.5013630951288]
This paper introduces techniques for advancing information retrieval with multimodal large language models (MLLMs)
We first study fine-tuning an MLLM as a bi-encoder retriever on 10 datasets with 16 retrieval tasks.
We propose modality-aware hard negative mining to mitigate the modality bias exhibited by MLLM retrievers.
arXiv Detail & Related papers (2024-11-04T20:06:34Z) - Unified Multimodal Interleaved Document Representation for Retrieval [57.65409208879344]
We propose a method that holistically embeds documents interleaved with multiple modalities.
We merge the representations of segmented passages into one single document representation.
We show that our approach substantially outperforms relevant baselines.
arXiv Detail & Related papers (2024-10-03T17:49:09Z) - PDF-MVQA: A Dataset for Multimodal Information Retrieval in PDF-based Visual Question Answering [13.625303311724757]
Document Question Answering (QA) presents a challenge in understanding visually-rich documents (VRD)
We propose PDF-MVQA, which is tailored for research journal articles, encompassing multiple pages and multimodal information retrieval.
arXiv Detail & Related papers (2024-04-19T09:00:05Z) - TextHawk: Exploring Efficient Fine-Grained Perception of Multimodal Large Language Models [9.232693392690702]
TextHawk is a document-oriented Multimodal Large Language Model (MLLM)
It is designed to explore efficient fine-grained perception by designing four dedicated components.
We conduct extensive experiments on both general and document-oriented MLLM benchmarks, and show that TextHawk outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-04-14T09:48:37Z) - TRIE++: Towards End-to-End Information Extraction from Visually Rich
Documents [51.744527199305445]
This paper proposes a unified end-to-end information extraction framework from visually rich documents.
Text reading and information extraction can reinforce each other via a well-designed multi-modal context block.
The framework can be trained in an end-to-end trainable manner, achieving global optimization.
arXiv Detail & Related papers (2022-07-14T08:52:07Z) - Towards a Multi-modal, Multi-task Learning based Pre-training Framework
for Document Representation Learning [5.109216329453963]
We introduce Document Topic Modelling and Document Shuffle Prediction as novel pre-training tasks.
We utilize the Longformer network architecture as the backbone to encode the multi-modal information from multi-page documents in an end-to-end fashion.
arXiv Detail & Related papers (2020-09-30T05:39:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.