論文の概要: MAexp: A Generic Platform for RL-based Multi-Agent Exploration
- arxiv url: http://arxiv.org/abs/2404.12824v1
- Date: Fri, 19 Apr 2024 12:00:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 15:16:46.752793
- Title: MAexp: A Generic Platform for RL-based Multi-Agent Exploration
- Title(参考訳): MAexp: RLベースのマルチエージェント探索のための汎用プラットフォーム
- Authors: Shaohao Zhu, Jiacheng Zhou, Anjun Chen, Mingming Bai, Jiming Chen, Jinming Xu,
- Abstract要約: 既存のプラットフォームはサンプリングの非効率性とマルチエージェント強化学習(MARL)アルゴリズムの多様性の欠如に悩まされている。
我々は、多エージェント探索のための汎用プラットフォームであるMAexpを提案し、最先端のMARLアルゴリズムと代表シナリオを統合した。
- 参考スコア(独自算出の注目度): 5.672198570643586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The sim-to-real gap poses a significant challenge in RL-based multi-agent exploration due to scene quantization and action discretization. Existing platforms suffer from the inefficiency in sampling and the lack of diversity in Multi-Agent Reinforcement Learning (MARL) algorithms across different scenarios, restraining their widespread applications. To fill these gaps, we propose MAexp, a generic platform for multi-agent exploration that integrates a broad range of state-of-the-art MARL algorithms and representative scenarios. Moreover, we employ point clouds to represent our exploration scenarios, leading to high-fidelity environment mapping and a sampling speed approximately 40 times faster than existing platforms. Furthermore, equipped with an attention-based Multi-Agent Target Generator and a Single-Agent Motion Planner, MAexp can work with arbitrary numbers of agents and accommodate various types of robots. Extensive experiments are conducted to establish the first benchmark featuring several high-performance MARL algorithms across typical scenarios for robots with continuous actions, which highlights the distinct strengths of each algorithm in different scenarios.
- Abstract(参考訳): sim-to-realギャップはシーンの量子化とアクションの離散化によるRLに基づくマルチエージェント探索において大きな課題となる。
既存のプラットフォームはサンプリングの効率の悪さと、さまざまなシナリオにわたるマルチエージェント強化学習(MARL)アルゴリズムの多様性の欠如に悩まされており、その広範な応用を抑えている。
これらのギャップを埋めるために,多エージェント探索のための汎用プラットフォームであるMAexpを提案する。
さらに、探索シナリオを表現するために点雲を使用し、高忠実度環境マッピングとサンプリング速度を既存のプラットフォームより約40倍高速にします。
さらに、アテンションベースのマルチエージェントターゲットジェネレータとシングルエージェントモーションプランナーを備えており、MAexpは任意の数のエージェントと様々な種類のロボットに対応できる。
連続的な動作を持つロボットの典型的なシナリオにまたがって、いくつかの高性能なMARLアルゴリズムを特徴付ける最初のベンチマークを確立するために、大規模な実験が行われた。
関連論文リスト
- MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
大規模言語モデル(LLM)は、ロボティクスの操作やナビゲーションなど、さまざまな領域にまたがる優れた計画能力を示している。
特殊なLLMエージェント間で高レベル計画および低レベル制御コード生成を分散する新しいマルチエージェントLLMフレームワークを提案する。
長軸タスクを含む9つのRLBenchタスクに対するアプローチを評価し、ゼロショット環境でロボット操作を解く能力を実証した。
論文 参考訳(メタデータ) (2024-11-26T17:53:44Z) - Exploring Multi-Agent Reinforcement Learning for Unrelated Parallel Machine Scheduling [2.3034630097498883]
本研究は,強化学習環境を紹介し,実証分析を行う。
実験では、シングルエージェントとマルチエージェントアプローチにさまざまなディープニューラルネットワークポリシーを採用している。
シングルエージェントアルゴリズムは縮小シナリオにおいて適切に機能する一方、マルチエージェントアプローチは協調学習における課題を明らかにするが、スケーラブルな能力を示す。
論文 参考訳(メタデータ) (2024-11-12T08:27:27Z) - Very Large-Scale Multi-Agent Simulation in AgentScope [112.98986800070581]
我々は,ユーザフレンドリーなマルチエージェントプラットフォームであるAgentScopeの新機能とコンポーネントを開発した。
高いスケーラビリティと高効率を実現するために,アクタをベースとした分散機構を提案する。
また、多数のエージェントを便利に監視し、管理するためのWebベースのインターフェースも提供します。
論文 参考訳(メタデータ) (2024-07-25T05:50:46Z) - Imagine, Initialize, and Explore: An Effective Exploration Method in
Multi-Agent Reinforcement Learning [27.81925751697255]
複雑なシナリオにおける効率的なマルチエージェント探索法を提案する。
我々は、状態、観察、プロンプト、行動、報酬が自己回帰的に予測されるシーケンスモデリング問題として想像を定式化する。
臨界状態のエージェントを初期化することにより、IIEは潜在的に重要な未探索領域を発見する可能性を大幅に高める。
論文 参考訳(メタデータ) (2024-02-28T01:45:01Z) - Factorization of Multi-Agent Sampling-Based Motion Planning [72.42734061131569]
現代のロボティクスは、共有環境内で複数のエンボディエージェントを動作させることが多い。
標準的なサンプリングベースのアルゴリズムは、ロボットの関節空間における解の探索に使用できる。
我々は、因子化の概念をサンプリングベースアルゴリズムに統合し、既存の手法への最小限の変更しか必要としない。
本稿では, PRM* のサンプル複雑性の観点から解析的ゲインを導出し, RRG の実証結果を示す。
論文 参考訳(メタデータ) (2023-04-01T15:50:18Z) - Asynchronous Multi-Agent Reinforcement Learning for Efficient Real-Time
Multi-Robot Cooperative Exploration [16.681164058779146]
本稿では,複数のロボットが,未知の領域をできるだけ早く探索する必要がある,協調探索の課題について考察する。
既存のMARLベースの手法では、すべてのエージェントが完全に同期的に動作していると仮定して、探索効率の指標としてアクション作成ステップを採用している。
本稿では,非同期MARLソリューションであるAsynchronous Coordination Explorer (ACE)を提案する。
論文 参考訳(メタデータ) (2023-01-09T14:53:38Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
マイクロプロセッサアーキテクトは、高性能でエネルギー効率の追求において、ドメイン固有のカスタマイズにますます頼っている。
この問題に対処するために,Multi-Agent RL (MARL) を利用した別の定式化を提案する。
評価の結果,MARLの定式化は単エージェントRLのベースラインよりも一貫して優れていた。
論文 参考訳(メタデータ) (2022-11-29T17:10:24Z) - From Multi-agent to Multi-robot: A Scalable Training and Evaluation
Platform for Multi-robot Reinforcement Learning [12.74238738538799]
マルチエージェント強化学習(MARL)は、過去数十年間、学術や産業から広く注目を集めてきた。
これらの手法が実際のシナリオ、特にマルチロボットシステムでどのように機能するかは未だ分かっていない。
本稿では,マルチロボット強化学習(MRRL)のためのスケーラブルなエミュレーションプラットフォームSMARTを提案する。
論文 参考訳(メタデータ) (2022-06-20T06:36:45Z) - The Multi-Agent Pickup and Delivery Problem: MAPF, MARL and Its
Warehouse Applications [2.969705152497174]
マルチエージェントピックアップおよび配送問題に対する2つの最先端ソリューションを,異なる原理に基づいて検討した。
具体的には、コンフリクトベースサーチ(CBS)と呼ばれるMAPFアルゴリズムと、共有経験アクター批判(SEAC)と呼ばれる現在のMARLアルゴリズムについて検討する。
論文 参考訳(メタデータ) (2022-03-14T13:23:35Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
本稿では,タスク非依存ストレージから取得したMBRLエージェントのトレーニングサンプルを提供するRAMaというメタ学習型アドレッシングモデルを提案する。
このモデルは、期待されるエージェントのパフォーマンスを最大化するために、ストレージから事前のタスクを解く有望な軌道を選択することで訓練される。
論文 参考訳(メタデータ) (2021-10-25T20:02:57Z) - Forgetful Experience Replay in Hierarchical Reinforcement Learning from
Demonstrations [55.41644538483948]
本稿では,複雑な視覚環境において,エージェントが低品質な実演を行えるようにするためのアプローチの組み合わせを提案する。
提案した目標指向のリプレイバッファ構築により,エージェントはデモにおいて複雑な階層的タスクを解くためのサブゴールを自動的に強調することができる。
私たちのアルゴリズムに基づくこのソリューションは、有名なMineRLコンペティションのすべてのソリューションを破り、エージェントがMinecraft環境でダイヤモンドをマイニングすることを可能にする。
論文 参考訳(メタデータ) (2020-06-17T15:38:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。