Physical Layer Authentication Using Information Reconciliation
- URL: http://arxiv.org/abs/2404.12874v1
- Date: Fri, 19 Apr 2024 13:20:13 GMT
- Title: Physical Layer Authentication Using Information Reconciliation
- Authors: Atsu Kokuvi Angélo Passah, Rodrigo C. de Lamare, Arsenia Chorti,
- Abstract summary: This paper proposes physical layer authentication (PLA) expected to complement existing traditional approaches.
The precision and consistency of PLA is impacted because of random variations of wireless channel realizations between different time slots.
In particular, we adopt distributed source coding (Slepian-Wolf) reconciliation using polar codes to reconcile channel measurements spread in time.
- Score: 20.54391139132056
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: User authentication in future wireless communication networks is expected to become more complicated due to their large scale and heterogeneity. Furthermore, the computational complexity of classical cryptographic approaches based on public key distribution can be a limiting factor for using in simple, low-end Internet of things (IoT) devices. This paper proposes physical layer authentication (PLA) expected to complement existing traditional approaches, e.g., in multi-factor authentication protocols. The precision and consistency of PLA is impacted because of random variations of wireless channel realizations between different time slots, which can impair authentication performance. In order to address this, a method based on error-correcting codes in the form of reconciliation is considered in this work. In particular, we adopt distributed source coding (Slepian-Wolf) reconciliation using polar codes to reconcile channel measurements spread in time. Hypothesis testing is then applied to the reconciled vectors to accept or reject the device as authenticated. Simulation results show that the proposed PLA using reconciliation outperforms prior schemes even in low signal-to-noise ratio scenarios.
Related papers
- Enhanced Multiuser CSI-Based Physical Layer Authentication Based on Information Reconciliation [20.54391139132056]
Physical layer authentication (PLA) is a cost-effective solution for low-end Internet of Things networks.<n>We develop an information reconciliation scheme using Polar codes along with a quantization strategy that employs an arbitrary number of bits to enhance the performance of PLA.
arXiv Detail & Related papers (2025-05-16T07:11:04Z) - Decoding for Punctured Convolutional and Turbo Codes: A Deep Learning Solution for Protocols Compliance [22.85778198575678]
This paper presents a unified Long Short-Term Memory (LSTM)-based decoding architecture.
The proposed method unifies punctured convolutional and Turbo codes.
A puncture embedding mechanism integrates puncturing patterns directly into the network, enabling seamless adaptation to varying code rates.
arXiv Detail & Related papers (2025-02-21T14:00:14Z) - Communication-Efficient Federated Learning by Quantized Variance Reduction for Heterogeneous Wireless Edge Networks [55.467288506826755]
Federated learning (FL) has been recognized as a viable solution for local-privacy-aware collaborative model training in wireless edge networks.
Most existing communication-efficient FL algorithms fail to reduce the significant inter-device variance.
We propose a novel communication-efficient FL algorithm, named FedQVR, which relies on a sophisticated variance-reduced scheme.
arXiv Detail & Related papers (2025-01-20T04:26:21Z) - SignSGD with Federated Voting [69.06621279967865]
SignSGD with majority voting (signSGD-MV) is an effective distributed learning algorithm that can significantly reduce communication costs by one-bit quantization.
We propose a novel signSGD with textitfederated voting (signSGD-FV)
The idea of federated voting is to exploit learnable weights to perform weighted majority voting.
We demonstrate that the proposed signSGD-FV algorithm has a theoretical convergence guarantee even when edge devices use heterogeneous mini-batch sizes.
arXiv Detail & Related papers (2024-03-25T02:32:43Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning.
In this paper, we extend conformal prediction to the federated learning setting.
We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction framework.
arXiv Detail & Related papers (2023-05-27T19:57:27Z) - The Wyner Variational Autoencoder for Unsupervised Multi-Layer Wireless
Fingerprinting [6.632671046812309]
We propose a multi-layer fingerprinting framework that jointly considers the multi-layer signatures for improved identification performance.
In contrast to previous works, by leveraging the recent multi-view machine learning paradigm, our method can cluster the device information shared among the multi-layer features without supervision.
Our empirical results show that the proposed method outperforms the state-of-the-art baselines in both supervised and unsupervised settings.
arXiv Detail & Related papers (2023-03-28T10:05:06Z) - One-shot Generative Distribution Matching for Augmented RF-based UAV Identification [0.0]
This work addresses the challenge of identifying Unmanned Aerial Vehicles (UAV) using radiofrequency (RF) fingerprinting in limited RF environments.
The complexity and variability of RF signals, influenced by environmental interference and hardware imperfections, often render traditional RF-based identification methods ineffective.
One-shot generative methods for augmenting transformed RF signals offer a significant improvement in UAV identification.
arXiv Detail & Related papers (2023-01-20T02:35:43Z) - Cross-Platform Verification in Quantum Networks [0.7734726150561088]
We describe and analyze efficient cross-platform verification protocols for quantum states.
We show how these can be used to verify computations.
As a proof of principle, we implement basic versions of these schemes on available quantum processors.
arXiv Detail & Related papers (2022-12-15T13:07:33Z) - Deep Learning-Based Rate-Splitting Multiple Access for Reconfigurable
Intelligent Surface-Aided Tera-Hertz Massive MIMO [56.022764337221325]
Reconfigurable intelligent surface (RIS) can significantly enhance the service coverage of Tera-Hertz massive multiple-input multiple-output (MIMO) communication systems.
However, obtaining accurate high-dimensional channel state information (CSI) with limited pilot and feedback signaling overhead is challenging.
This paper proposes a deep learning (DL)-based rate-splitting multiple access scheme for RIS-aided Tera-Hertz multi-user multiple access systems.
arXiv Detail & Related papers (2022-09-18T03:07:37Z) - Few-Shot Specific Emitter Identification via Deep Metric Ensemble
Learning [26.581059299453663]
We propose a novel FS-SEI for aircraft identification via automatic dependent surveillance-broadcast (ADS-B) signals.
Specifically, the proposed method consists of feature embedding and classification.
Simulation results show that if the number of samples per category is more than 5, the average accuracy of our proposed method is higher than 98%.
arXiv Detail & Related papers (2022-07-14T01:09:22Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Verifying Low-dimensional Input Neural Networks via Input Quantization [12.42030531015912]
This paper revisits the original problem of verifying ACAS Xu networks.
We propose to prepend an input quantization layer to the network.
Our technique can deliver exact verification results immune to floating-point error.
arXiv Detail & Related papers (2021-08-18T03:42:05Z) - A Generalizable Model-and-Data Driven Approach for Open-Set RFF
Authentication [74.63333951647581]
Radio-frequency fingerprints(RFFs) are promising solutions for realizing low-cost physical layer authentication.
Machine learning-based methods have been proposed for RFF extraction and discrimination.
We propose a new end-to-end deep learning framework for extracting RFFs from raw received signals.
arXiv Detail & Related papers (2021-08-10T03:59:37Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.