Decoding for Punctured Convolutional and Turbo Codes: A Deep Learning Solution for Protocols Compliance
- URL: http://arxiv.org/abs/2502.15475v1
- Date: Fri, 21 Feb 2025 14:00:14 GMT
- Title: Decoding for Punctured Convolutional and Turbo Codes: A Deep Learning Solution for Protocols Compliance
- Authors: Yongli Yan, Linglong Dai,
- Abstract summary: This paper presents a unified Long Short-Term Memory (LSTM)-based decoding architecture.<n>The proposed method unifies punctured convolutional and Turbo codes.<n>A puncture embedding mechanism integrates puncturing patterns directly into the network, enabling seamless adaptation to varying code rates.
- Score: 22.85778198575678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural network-based decoding methods have shown promise in enhancing error correction performance, but traditional approaches struggle with the challenges posed by punctured codes. In particular, these methods fail to address the complexities of variable code rates and the need for protocol compatibility. This paper presents a unified Long Short-Term Memory (LSTM)-based decoding architecture specifically designed to overcome these challenges. The proposed method unifies punctured convolutional and Turbo codes. A puncture embedding mechanism integrates puncturing patterns directly into the network, enabling seamless adaptation to varying code rates, while balanced bit error rate training ensures robustness across different code lengths, rates, and channels, maintaining protocol flexibility. Extensive simulations in Additive White Gaussian Noise and Rayleigh fading channels demonstrate that the proposed approach outperforms conventional decoding techniques, providing significant improvements in decoding accuracy and robustness. These results underscore the potential of LSTM-based decoding as a promising solution for next-generation artificial intelligence powered communication systems.
Related papers
- Accelerating Error Correction Code Transformers [56.75773430667148]
We introduce a novel acceleration method for transformer-based decoders.
We achieve a 90% compression ratio and reduce arithmetic operation energy consumption by at least 224 times on modern hardware.
arXiv Detail & Related papers (2024-10-08T11:07:55Z) - Error Correction Code Transformer: From Non-Unified to Unified [20.902351179839282]
Traditional decoders were typically designed as fixed hardware circuits tailored to specific decoding algorithms.
This paper proposes a unified, code-agnostic Transformer-based decoding architecture capable of handling multiple linear block codes.
arXiv Detail & Related papers (2024-10-04T12:30:42Z) - Factor Graph Optimization of Error-Correcting Codes for Belief Propagation Decoding [62.25533750469467]
Low-Density Parity-Check (LDPC) codes possess several advantages over other families of codes.
The proposed approach is shown to outperform the decoding performance of existing popular codes by orders of magnitude.
arXiv Detail & Related papers (2024-06-09T12:08:56Z) - Learning Linear Block Error Correction Codes [62.25533750469467]
We propose for the first time a unified encoder-decoder training of binary linear block codes.
We also propose a novel Transformer model in which the self-attention masking is performed in a differentiable fashion for the efficient backpropagation of the code gradient.
arXiv Detail & Related papers (2024-05-07T06:47:12Z) - Friendly Attacks to Improve Channel Coding Reliability [0.33993877661368754]
"Friendly attack" aims at enhancing the performance of error correction channel codes.
Inspired by the concept of adversarial attacks, our method leverages the idea of introducing slight perturbations to the neural network input.
We demonstrate that the proposed friendly attack method can improve the reliability across different channels, modulations, codes, and decoders.
arXiv Detail & Related papers (2024-01-25T13:46:21Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
We propose to decode QLDPC codes based on a check matrix with redundant rows, generated from linear combinations of the rows in the original check matrix.
This approach yields a significant improvement in decoding performance with the additional advantage of very low decoding latency.
arXiv Detail & Related papers (2022-12-20T13:41:27Z) - Denoising Diffusion Error Correction Codes [92.10654749898927]
Recently, neural decoders have demonstrated their advantage over classical decoding techniques.
Recent state-of-the-art neural decoders suffer from high complexity and lack the important iterative scheme characteristic of many legacy decoders.
We propose to employ denoising diffusion models for the soft decoding of linear codes at arbitrary block lengths.
arXiv Detail & Related papers (2022-09-16T11:00:50Z) - Graph Neural Networks for Channel Decoding [71.15576353630667]
We showcase competitive decoding performance for various coding schemes, such as low-density parity-check (LDPC) and BCH codes.
The idea is to let a neural network (NN) learn a generalized message passing algorithm over a given graph.
We benchmark our proposed decoder against state-of-the-art in conventional channel decoding as well as against recent deep learning-based results.
arXiv Detail & Related papers (2022-07-29T15:29:18Z) - Boost decoding performance of finite geometry LDPC codes with deep
learning tactics [3.1519370595822274]
We seek a low-complexity and high-performance decoder for a class of finite geometry LDPC codes.
It is elaborated on how to generate high-quality training data effectively.
arXiv Detail & Related papers (2022-05-01T14:41:16Z) - Infomax Neural Joint Source-Channel Coding via Adversarial Bit Flip [41.28049430114734]
We propose a novel regularization method called Infomax Adversarial-Bit-Flip (IABF) to improve the stability and robustness of the neural joint source-channel coding scheme.
Our IABF can achieve state-of-the-art performances on both compression and error correction benchmarks and outperform the baselines by a significant margin.
arXiv Detail & Related papers (2020-04-03T10:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.