論文の概要: Unlocking Multi-View Insights in Knowledge-Dense Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2404.12879v1
- Date: Fri, 19 Apr 2024 13:27:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 14:57:17.386283
- Title: Unlocking Multi-View Insights in Knowledge-Dense Retrieval-Augmented Generation
- Title(参考訳): 知識密度検索型ジェネレーションにおけるマルチビュー視点のアンロック
- Authors: Guanhua Chen, Wenhan Yu, Lei Sha,
- Abstract要約: 本稿では,知識密度ドメインに適した新しいマルチビューRAGフレームワークであるMVRAGを紹介する。
法的および医学的事例検索実験は、リコール率と精度を著しく改善した。
- 参考スコア(独自算出の注目度): 10.431782420943764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While Retrieval-Augmented Generation (RAG) plays a crucial role in the application of Large Language Models (LLMs), existing retrieval methods in knowledge-dense domains like law and medicine still suffer from a lack of multi-perspective views, which are essential for improving interpretability and reliability. Previous research on multi-view retrieval often focused solely on different semantic forms of queries, neglecting the expression of specific domain knowledge perspectives. This paper introduces a novel multi-view RAG framework, MVRAG, tailored for knowledge-dense domains that utilizes intention-aware query rewriting from multiple domain viewpoints to enhance retrieval precision, thereby improving the effectiveness of the final inference. Experiments conducted on legal and medical case retrieval demonstrate significant improvements in recall and precision rates with our framework. Our multi-perspective retrieval approach unleashes the potential of multi-view information enhancing RAG tasks, accelerating the further application of LLMs in knowledge-intensive fields.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) は、Large Language Models (LLMs) の適用において重要な役割を担っているが、法や医学のような知識密度ドメインにおける既存の検索手法は、解釈可能性や信頼性の向上に不可欠である多視点ビューの欠如に悩まされている。
従来のマルチビュー検索の研究は、特定のドメイン知識の観点の表現を無視して、クエリの異なるセマンティックフォームにのみ焦点をあてることが多かった。
本稿では,複数のドメイン視点からの意図認識型クエリ書き換えを利用して,検索精度を向上し,最終的な推論の有効性を向上する,新しいマルチビューRAGフレームワークであるMVRAGを提案する。
法的および医学的事例検索実験は,本フレームワークによるリコール率と精度の大幅な向上を示した。
我々の多視点検索手法は、知識集約的な分野におけるLLMのさらなる適用を加速し、RAGタスクを増強する多視点情報の可能性を明らかにする。
関連論文リスト
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - MRAG-Bench: Vision-Centric Evaluation for Retrieval-Augmented Multimodal Models [115.16022378880376]
MRAG-Benchというマルチモーダル検索拡張生成ベンチマークを導入する。
MRAG-Benchは16,130枚の画像と1,353個の人間による複数の質問からなる。
その結果,すべての大規模視覚言語モデル (LVLM) は,テキスト知識と比較して画像で拡張すると改善が見られた。
論文 参考訳(メタデータ) (2024-10-10T17:55:02Z) - A Comprehensive Survey of Retrieval-Augmented Generation (RAG): Evolution, Current Landscape and Future Directions [0.0]
RAGは、検索機構と生成言語モデルを組み合わせることで、出力の精度を高める。
近年の研究では, 検索効率向上のための新しい手法が注目されている。
RAGモデルの堅牢性向上に焦点をあてた今後の研究方向性が提案されている。
論文 参考訳(メタデータ) (2024-10-03T22:29:47Z) - Searching for Best Practices in Retrieval-Augmented Generation [31.438681543849224]
Retrieval-augmented Generation (RAG) 技術は最新情報の統合に有効であることが証明されている。
本稿では,既存のRAG手法とその潜在的な組み合わせについて検討し,最適なRAG手法を同定する。
我々は、パフォーマンスと効率のバランスをとるRAGをデプロイするためのいくつかの戦略を提案する。
論文 参考訳(メタデータ) (2024-07-01T12:06:34Z) - Retrieval Meets Reasoning: Even High-school Textbook Knowledge Benefits Multimodal Reasoning [49.3242278912771]
RMR(Retrieval Meets Reasoning)と呼ばれる新しいマルチモーダルRAGフレームワークについて紹介する。
RMRフレームワークは、最も関連性の高い問合せ対を特定するために、バイモーダル検索モジュールを使用する。
これは、ベンチマークデータセットのスペクトルにわたって様々なビジョン言語モデルの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2024-05-31T14:23:49Z) - Mitigating Hallucinations in Large Language Models via Self-Refinement-Enhanced Knowledge Retrieval [14.58181631462891]
大規模言語モデル(LLM)は、様々な領域で顕著な機能を示している。
幻覚への感受性は、医療などの重要な分野への展開に重大な課題をもたらす。
我々は,LLMの応答の事実性を高めるために,自己精製強化知識グラフ検索法(Re-KGR)を提案する。
論文 参考訳(メタデータ) (2024-05-10T15:40:50Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
大規模言語モデル(LLM)は、言語理解と生成において革命的な能力を示している。
Retrieval-Augmented Generation (RAG)は、信頼性と最新の外部知識を提供する。
RA-LLMは、モデルの内部知識に頼るのではなく、外部および権威的な知識ベースを活用するために登場した。
論文 参考訳(メタデータ) (2024-05-10T02:48:45Z) - REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering [115.72130322143275]
REAR(Relevance-Aware Retrieval-augmented approach for open-domain Question answering, QA)
我々は,特殊な設計のアセスメントモジュールを組み込むことで,LLMベースのRAGシステムのための新しいアーキテクチャを開発する。
オープンドメインの4つのQAタスクの実験では、REARは以前の競争力のあるRAGアプローチよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-02-27T13:22:51Z) - Learning Domain Invariant Representations for Generalizable Person
Re-Identification [71.35292121563491]
ReID(Generalizable person Re-Identification)は、最近のコンピュータビジョンコミュニティで注目を集めている。
DIR-ReID(Domain Invariant Representations for Generalizable Person Re-Identification)という新しい一般化フレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-29T18:59:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。