論文の概要: OMGM: Orchestrate Multiple Granularities and Modalities for Efficient Multimodal Retrieval
- arxiv url: http://arxiv.org/abs/2505.07879v1
- Date: Sat, 10 May 2025 14:24:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 20:57:54.249289
- Title: OMGM: Orchestrate Multiple Granularities and Modalities for Efficient Multimodal Retrieval
- Title(参考訳): OMGM: 効率的なマルチモーダル検索のための複数粒度・モダリティのオーケストレーション
- Authors: Wei Yang, Jingjing Fu, Rui Wang, Jinyu Wang, Lei Song, Jiang Bian,
- Abstract要約: 知識に基づく視覚質問応答(KB-VQA)に対処するための視覚言語検索拡張生成(RAG)が有効なアプローチとなっている
本稿では,複数の粒度とモダリティを調和させて有効性を向上する,粗大で微細なマルチステップ検索を特徴とするマルチモーダルRAGシステムを提案する。
- 参考スコア(独自算出の注目度): 17.75545831558775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-language retrieval-augmented generation (RAG) has become an effective approach for tackling Knowledge-Based Visual Question Answering (KB-VQA), which requires external knowledge beyond the visual content presented in images. The effectiveness of Vision-language RAG systems hinges on multimodal retrieval, which is inherently challenging due to the diverse modalities and knowledge granularities in both queries and knowledge bases. Existing methods have not fully tapped into the potential interplay between these elements. We propose a multimodal RAG system featuring a coarse-to-fine, multi-step retrieval that harmonizes multiple granularities and modalities to enhance efficacy. Our system begins with a broad initial search aligning knowledge granularity for cross-modal retrieval, followed by a multimodal fusion reranking to capture the nuanced multimodal information for top entity selection. A text reranker then filters out the most relevant fine-grained section for augmented generation. Extensive experiments on the InfoSeek and Encyclopedic-VQA benchmarks show our method achieves state-of-the-art retrieval performance and highly competitive answering results, underscoring its effectiveness in advancing KB-VQA systems.
- Abstract(参考訳): 視覚言語検索拡張生成(RAG)は、画像に提示される視覚コンテンツ以外の外部知識を必要とする知識ベース視覚質問応答(KB-VQA)に対処するための効果的なアプローチとなっている。
視覚言語RAGシステムの有効性はマルチモーダル検索に強く依存しており、クエリと知識ベースの両方において、多様なモダリティと知識の粒度のために本質的に困難である。
既存の手法はこれらの要素間の潜在的な相互作用に完全には適用されていない。
本稿では,複数の粒度とモダリティを調和させて有効性を向上する,粗大で微細なマルチステップ検索を特徴とするマルチモーダルRAGシステムを提案する。
我々のシステムは、クロスモーダル検索のための知識の粒度を整合させる広範囲な初期探索から始まり、次いでマルチモーダル融合によって、上位エンティティ選択のためのニュアンス付きマルチモーダル情報をキャプチャする。
テキストリランカは、拡張生成のために最も関連性の高いきめ細かなセクションをフィルタリングする。
InfoSeek と Encyclopedic-VQA ベンチマークの大規模な実験により, KB-VQA システムの進歩効果を実証し, 最先端の検索性能と高い競争力のある回答結果を得た。
関連論文リスト
- A Multi-Granularity Retrieval Framework for Visually-Rich Documents [4.804551482123172]
本稿では,MMDocIRとM2KRの2つのベンチマークタスクに適した,統一されたマルチグラニュラリティマルチモーダル検索フレームワークを提案する。
提案手法は,階層型符号化戦略,モダリティ対応検索機構,視覚言語モデル(VLM)に基づく候補フィルタリングを統合する。
本フレームワークは,タスク固有の微調整を必要とせずに,堅牢な性能を示す。
論文 参考訳(メタデータ) (2025-05-01T02:40:30Z) - A Survey of Multimodal Retrieval-Augmented Generation [3.9616308910160445]
MRAG(Multimodal Retrieval-Augmented Generation)は、マルチモーダルデータ(テキスト、画像、ビデオ)を検索および生成プロセスに統合することにより、大規模言語モデル(LLM)を強化する。
近年の研究では、MRAGは視覚とテキストの両方の理解を必要とするシナリオにおいて、従来の検索・拡張生成(RAG)よりも優れていることが示されている。
論文 参考訳(メタデータ) (2025-03-26T02:43:09Z) - Open-Ended and Knowledge-Intensive Video Question Answering [20.256081440725353]
知識集約型ビデオ質問応答 (KI-VideoQA) を多モード検索拡張世代のレンズを用いて検討する。
本稿では,最先端の検索モデルと視覚言語モデルを用いて,様々な検索拡張手法について検討する。
我々は、KnowIT VQAデータセットにおいて、複数の選択質問に対する精度を17.5%向上させる。
論文 参考訳(メタデータ) (2025-02-17T12:40:35Z) - VisDoM: Multi-Document QA with Visually Rich Elements Using Multimodal Retrieval-Augmented Generation [100.06122876025063]
本稿では,マルチドキュメント設定でQAシステムを評価するために設計された,初の総合ベンチマークであるVisDoMBenchを紹介する。
視覚とテキストのRAGを同時に利用する新しいマルチモーダル検索拡張生成(RAG)手法であるVisDoMRAGを提案する。
論文 参考訳(メタデータ) (2024-12-14T06:24:55Z) - CUE-M: Contextual Understanding and Enhanced Search with Multimodal Large Language Model [9.224965304457708]
本稿では,新しいマルチモーダル検索フレームワークであるMLLM (CUE-M) について述べる。
画像コンテキストの強化、インテントの洗練、コンテキストクエリ生成、外部APIの統合、関連ベースのフィルタリングなどが含まれている。
知識に基づくVQAと安全性に関する実単語データセットと公開ベンチマークの実験は、CUE-Mがベースラインを上回り、新しい最先端の結果を確立することを示した。
論文 参考訳(メタデータ) (2024-11-19T07:16:48Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - An Interactive Multi-modal Query Answering System with Retrieval-Augmented Large Language Models [21.892975397847316]
本稿では,新たに開発したマルチモーダル検索フレームワークとナビゲーショングラフインデックスを用いて,対話型マルチモーダルクエリ・アンサーリング(MQA)システムを提案する。
MQAの特筆すべき点は、異なるモダリティの重要性を評価するために、コントラスト学習を利用することである。
本システムは,計算プルーニング技術を用いて改良した,先進的なナビゲーショングラフインデックスによる効率的な検索を実現する。
論文 参考訳(メタデータ) (2024-07-05T02:01:49Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
マルチモーダルな操作検出とグラウンド処理のためのトランスフォーマーベースのフレームワークを構築する。
本フレームワークは,マルチモーダルアライメントの能力を維持しながら,モダリティ特有の特徴を同時に探求する。
本稿では,グローバルな文脈的キューを各モーダル内に適応的に集約する暗黙的操作クエリ(IMQ)を提案する。
論文 参考訳(メタデータ) (2023-09-22T06:55:41Z) - End-to-end Knowledge Retrieval with Multi-modal Queries [50.01264794081951]
ReMuQは、テキストと画像のクエリからコンテンツを統合することで、大規模なコーパスから知識を取得するシステムを必要とする。
本稿では,入力テキストや画像を直接処理し,関連する知識をエンドツーエンドで検索する検索モデルReViz'を提案する。
ゼロショット設定下での2つのデータセットの検索において,優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-01T08:04:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。