論文の概要: MM-PhyRLHF: Reinforcement Learning Framework for Multimodal Physics Question-Answering
- arxiv url: http://arxiv.org/abs/2404.12926v1
- Date: Fri, 19 Apr 2024 14:52:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-22 14:46:18.463485
- Title: MM-PhyRLHF: Reinforcement Learning Framework for Multimodal Physics Question-Answering
- Title(参考訳): MM-PhyRLHF:マルチモーダル物理質問応答のための強化学習フレームワーク
- Authors: Avinash Anand, Janak Kapuriya, Chhavi Kirtani, Apoorv Singh, Jay Saraf, Naman Lal, Jatin Kumar, Adarsh Raj Shivam, Astha Verma, Rajiv Ratn Shah, Roger Zimmermann,
- Abstract要約: マルチモーダル物理MCQに応答するLMMモデルを提案する。
ドメイン適応には、インドの高校レベルのマルチモーダル物理問題からなるMM-PhyQAデータセットを利用する。
画像キャプションでは、各画像に図の詳細な説明を加え、幻覚と画像処理エラーを最小限に抑える。
- 参考スコア(独自算出の注目度): 32.87943023416162
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in LLMs have shown their significant potential in tasks like text summarization and generation. Yet, they often encounter difficulty while solving complex physics problems that require arithmetic calculation and a good understanding of concepts. Moreover, many physics problems include images that contain important details required to understand the problem's context. We propose an LMM-based chatbot to answer multimodal physics MCQs. For domain adaptation, we utilize the MM-PhyQA dataset comprising Indian high school-level multimodal physics problems. To improve the LMM's performance, we experiment with two techniques, RLHF (Reinforcement Learning from Human Feedback) and Image Captioning. In image captioning, we add a detailed explanation of the diagram in each image, minimizing hallucinations and image processing errors. We further explore the integration of Reinforcement Learning from Human Feedback (RLHF) methodology inspired by the ranking approach in RLHF to enhance the human-like problem-solving abilities of the models. The RLHF approach incorporates human feedback into the learning process of LLMs, improving the model's problem-solving skills, truthfulness, and reasoning capabilities, minimizing the hallucinations in the answers, and improving the quality instead of using vanilla-supervised fine-tuned models. We employ the LLaVA open-source model to answer multimodal physics MCQs and compare the performance with and without using RLHF.
- Abstract(参考訳): LLMの最近の進歩は、テキスト要約や生成といったタスクにおいて、その大きな可能性を示している。
しかし、算術計算と概念の理解を必要とする複雑な物理問題を解く際に、しばしば困難に遭遇する。
さらに、物理問題の多くは、問題のコンテキストを理解するために必要な重要な詳細を含む画像を含んでいる。
マルチモーダル物理MCQに応答するLMMベースのチャットボットを提案する。
ドメイン適応には、インドの高校レベルのマルチモーダル物理問題からなるMM-PhyQAデータセットを利用する。
LMMの性能を向上させるために,RLHF(Reinforcement Learning from Human Feedback)と画像キャプションという2つの手法を実験した。
画像キャプションでは、各画像に図の詳細な説明を加え、幻覚と画像処理エラーを最小限に抑える。
さらに,RLHFのランク付け手法にインスパイアされた強化学習(Reinforcement Learning from Human Feedback, RLHF)手法の統合について検討する。
RLHFアプローチは、LLMの学習プロセスに人間のフィードバックを取り入れ、モデルの問題解決スキル、真理性、推論能力を改善し、回答における幻覚を最小化し、バニラが監督する微調整モデルを使う代わりに品質を改善する。
我々はLLaVAオープンソースモデルを用いてマルチモーダル物理MCQに答え、その性能をRLHFを使わずに比較する。
関連論文リスト
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Math-PUMA: Progressive Upward Multimodal Alignment to Enhance Mathematical Reasoning [5.9767694994869425]
MLLM(Multimodal Large Language Models)は、テキストベースの数学的問題の解法として優れている。
彼らは、主に自然の風景画像で訓練されているため、数学的図形に苦しむ。
本研究では,プログレッシブ・アップワード・マルチモーダルアライメントに着目したMath-PUMAを提案する。
論文 参考訳(メタデータ) (2024-08-16T10:11:05Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - Reinforcement Learning Problem Solving with Large Language Models [0.0]
大規模言語モデル (LLM) には膨大な量の世界知識があり、自然言語処理 (NLP) タスクの性能向上のために様々な分野に応用できるようになっている。
これはまた、人間とAIシステム間の会話に基づく対話による、意図した問題を解決するための、よりアクセスしやすいパラダイムを促進する。
研究科学者」と「レガリー・マター・インテーク」の2つの詳細なケーススタディを通して、我々のアプローチの実践性を示す。
論文 参考訳(メタデータ) (2024-04-29T12:16:08Z) - RLHF Deciphered: A Critical Analysis of Reinforcement Learning from Human Feedback for LLMs [49.386699863989335]
大きな言語モデル(LLM)を訓練し、人間の効果的なアシスタントとして機能させるには、慎重に検討する必要がある。
有望なアプローチとして、人間からのフィードバック(RLHF)からの強化学習がある。
本稿では、強化学習原理のレンズを通してRLHFを分析し、その基礎を理解する。
論文 参考訳(メタデータ) (2024-04-12T15:54:15Z) - MM-PhyQA: Multimodal Physics Question-Answering With Multi-Image CoT Prompting [0.6675160100853794]
我々は,高度に構成された高次マルチモーダル物理問題を含む新しいデータセットMM-PhyQAをキュレートした。
GPT-4を用いたゼロショット予測とLLaVA(LLaVAとLLaVA-1.5)を用いて,マルチモーダル入力からなる質問に対する回答を生成する。
テキスト入力のみからなるLLMの性能を評価するため,Mistral-7BおよびLLaMA2-7bモデルのベースおよび微調整版の性能試験を行った。
論文 参考訳(メタデータ) (2024-04-11T07:11:47Z) - Feast Your Eyes: Mixture-of-Resolution Adaptation for Multimodal Large
Language Models [84.78513908768011]
MRA(Mixture-of-Resolution Adaptation)と呼ばれるMLLMの新規かつ効率的な手法を提案する。
MRAは解像度の異なる画像に対して2つの視覚経路を採用し、高解像度の視覚情報を低解像度の経路に埋め込む。
MRAを検証するために、LLaVAと呼ばれる最近のMLLMに適用し、新しいモデルLLaVA-HRと呼ぶ。
論文 参考訳(メタデータ) (2024-03-05T14:31:24Z) - Physics simulation capabilities of LLMs [0.0]
大規模言語モデル(LLM)は、学部レベルから大学院レベルの物理学教科書の問題を解くことができ、コーディングに精通している。
本稿では、PhDレベルから研究レベルの計算物理問題に対するSOTA (State-of-the-art) LLMの評価を行う。
論文 参考訳(メタデータ) (2023-12-04T18:06:41Z) - Aligning Large Multimodal Models with Factually Augmented RLHF [176.54751941088819]
大規模マルチモーダルモデル(LMM)はモダリティにまたがって構築され、2つのモダリティ間のミスアライメントは「ハロシン化」をもたらす。
テキスト領域から視覚言語アライメントのタスクまで,RLHF(Reinforcement Learning from Human Feedback)を適応させる。
本稿では、報酬モデルに付加的な事実情報を追加するFactually Augmented RLHFという新しいアライメントアルゴリズムを提案する。
提案手法は,テキストのみのGPT-4の性能レベルが94%であるLLaVA-Benchデータセットにおいて,顕著な改善を実現している。
論文 参考訳(メタデータ) (2023-09-25T20:59:33Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
数学領域における推論は、小言語モデル(LM)にとって重要な課題である。
多様なアノテーションスタイルで既存の数学的問題データセットを利用する新しい手法を提案する。
実験結果から,LLaMA-7Bモデルが先行手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-07-16T05:41:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。