Private Agent-Based Modeling
- URL: http://arxiv.org/abs/2404.12983v1
- Date: Fri, 19 Apr 2024 16:30:40 GMT
- Title: Private Agent-Based Modeling
- Authors: Ayush Chopra, Arnau Quera-Bofarull, Nurullah Giray-Kuru, Michael Wooldridge, Ramesh Raskar,
- Abstract summary: The utility of agent-based models in decision-making relies on their capacity to accurately replicate populations.
Yet, the incorporation of such data poses significant challenges due to privacy concerns.
We introduce a paradigm for private agent-based modeling wherein the simulation, calibration, and analysis of agent-based models can be achieved without centralizing the agents attributes or interactions.
- Score: 13.072333113108531
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The practical utility of agent-based models in decision-making relies on their capacity to accurately replicate populations while seamlessly integrating real-world data streams. Yet, the incorporation of such data poses significant challenges due to privacy concerns. To address this issue, we introduce a paradigm for private agent-based modeling wherein the simulation, calibration, and analysis of agent-based models can be achieved without centralizing the agents attributes or interactions. The key insight is to leverage techniques from secure multi-party computation to design protocols for decentralized computation in agent-based models. This ensures the confidentiality of the simulated agents without compromising on simulation accuracy. We showcase our protocols on a case study with an epidemiological simulation comprising over 150,000 agents. We believe this is a critical step towards deploying agent-based models to real-world applications.
Related papers
- Modeling Boundedly Rational Agents with Latent Inference Budgets [56.24971011281947]
We introduce a latent inference budget model (L-IBM) that models agents' computational constraints explicitly.
L-IBMs make it possible to learn agent models using data from diverse populations of suboptimal actors.
We show that L-IBMs match or outperform Boltzmann models of decision-making under uncertainty.
arXiv Detail & Related papers (2023-12-07T03:55:51Z) - A Comprehensive Modeling Approach for Crop Yield Forecasts using
AI-based Methods and Crop Simulation Models [0.21094707683348418]
We propose a comprehensive approach for yield forecasting that combines data-driven solutions, crop simulation models, and model surrogates.
Our data-driven modeling approach outperforms previous works with yield correlation predictions close to 91%.
arXiv Detail & Related papers (2023-06-16T18:13:24Z) - Surrogate uncertainty estimation for your time series forecasting black-box: learn when to trust [2.0393477576774752]
Our research introduces a method for uncertainty estimation.
It enhances any base regression model with reasonable uncertainty estimates.
Using various time-series forecasting data, we found that our surrogate model-based technique delivers significantly more accurate confidence intervals.
arXiv Detail & Related papers (2023-02-06T14:52:56Z) - Differential Assessment of Black-Box AI Agents [29.98710357871698]
We propose a novel approach to differentially assess black-box AI agents that have drifted from their previously known models.
We leverage sparse observations of the drifted agent's current behavior and knowledge of its initial model to generate an active querying policy.
Empirical evaluation shows that our approach is much more efficient than re-learning the agent model from scratch.
arXiv Detail & Related papers (2022-03-24T17:48:58Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Validation and Inference of Agent Based Models [0.0]
Agent Based Modelling (ABM) is a computational framework for simulating the behaviours and interactions of autonomous agents.
Recent research in ABC has yielded increasingly efficient algorithms for calculating the approximate likelihood.
These are investigated and compared using a pedestrian model in the Hamilton CBD.
arXiv Detail & Related papers (2021-07-08T05:53:37Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
We introduce a 3-dimensional evaluation metric that characterizes the fidelity, diversity and generalization performance of any generative model in a domain-agnostic fashion.
Our metric unifies statistical divergence measures with precision-recall analysis, enabling sample- and distribution-level diagnoses of model fidelity and diversity.
arXiv Detail & Related papers (2021-02-17T18:25:30Z) - Model-based Policy Optimization with Unsupervised Model Adaptation [37.09948645461043]
We investigate how to bridge the gap between real and simulated data due to inaccurate model estimation for better policy optimization.
We propose a novel model-based reinforcement learning framework AMPO, which introduces unsupervised model adaptation.
Our approach achieves state-of-the-art performance in terms of sample efficiency on a range of continuous control benchmark tasks.
arXiv Detail & Related papers (2020-10-19T14:19:42Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
We show that simple model-based agents can outperform state-of-the-art model-free agents in terms of both sample-efficiency and final reward.
Our findings suggest that model-based policy evaluation deserves closer attention.
arXiv Detail & Related papers (2020-08-28T17:58:29Z) - Model-based Reinforcement Learning for Decentralized Multiagent
Rendezvous [66.6895109554163]
Underlying the human ability to align goals with other agents is their ability to predict the intentions of others and actively update their own plans.
We propose hierarchical predictive planning (HPP), a model-based reinforcement learning method for decentralized multiagent rendezvous.
arXiv Detail & Related papers (2020-03-15T19:49:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.