"Hey..! This medicine made me sick": Sentiment Analysis of User-Generated Drug Reviews using Machine Learning Techniques
- URL: http://arxiv.org/abs/2404.13057v1
- Date: Tue, 9 Apr 2024 08:42:34 GMT
- Title: "Hey..! This medicine made me sick": Sentiment Analysis of User-Generated Drug Reviews using Machine Learning Techniques
- Authors: Abhiram B. Nair, Abhinand K., Anamika U., Denil Tom Jaison, Ajitha V., V. S. Anoop,
- Abstract summary: This project proposes a drug review classification system that classifies user reviews on a particular drug into different classes, such as positive, negative, and neutral.
The collected data is manually labeled and verified manually to ensure that the labels are correct.
- Score: 2.2874754079405535
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Sentiment analysis has become increasingly important in healthcare, especially in the biomedical and pharmaceutical fields. The data generated by the general public on the effectiveness, side effects, and adverse drug reactions are goldmines for different agencies and medicine producers to understand the concerns and reactions of people. Despite the challenge of obtaining datasets on drug-related problems, sentiment analysis on this topic would be a significant boon to the field. This project proposes a drug review classification system that classifies user reviews on a particular drug into different classes, such as positive, negative, and neutral. This approach uses a dataset that is collected from publicly available sources containing drug reviews, such as drugs.com. The collected data is manually labeled and verified manually to ensure that the labels are correct. Three pre-trained language models, such as BERT, SciBERT, and BioBERT, are used to obtain embeddings, which were later used as features to different machine learning classifiers such as decision trees, support vector machines, random forests, and also deep learning algorithms such as recurrent neural networks. The performance of these classifiers is quantified using precision, recall, and f1-score, and the results show that the proposed approaches are useful in analyzing the sentiments of people on different drugs.
Related papers
- Reddit-Impacts: A Named Entity Recognition Dataset for Analyzing Clinical and Social Effects of Substance Use Derived from Social Media [6.138126219622993]
Substance use disorders (SUDs) are a growing concern globally, necessitating enhanced understanding of the problem and its trends through data-driven research.
Social media are unique and important sources of information about SUDs, particularly since the data in such sources are often generated by people with lived experiences.
In this paper, we introduce Reddit-Impacts, a challenging Named Entity Recognition (NER) dataset curated from subreddits dedicated to discussions on prescription and illicit opioids, as well as medications for opioid use disorder.
The dataset specifically concentrates on the lesser-studied, yet critically important, aspects of substance use--its
arXiv Detail & Related papers (2024-05-09T23:43:57Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
We propose EmerGNN, a graph neural network (GNN) that can effectively predict interactions for emerging drugs.
EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths.
Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
arXiv Detail & Related papers (2023-11-15T06:34:00Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - Knowledge-Driven New Drug Recommendation [88.35607943144261]
We develop a drug-dependent multi-phenotype few-shot learner to bridge the gap between existing and new drugs.
EDGE eliminates the false-negative supervision signal using an external drug-disease knowledge base.
Results show that EDGE achieves 7.3% improvement on the ROC-AUC score over the best baseline.
arXiv Detail & Related papers (2022-10-11T16:07:52Z) - DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for
AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise
Annotations [90.27736364704108]
We present DrugOOD, a systematic OOD dataset curator and benchmark for AI-aided drug discovery.
DrugOOD comes with an open-source Python package that fully automates benchmarking processes.
We focus on one of the most crucial problems in AIDD: drug target binding affinity prediction.
arXiv Detail & Related papers (2022-01-24T12:32:48Z) - Selection of pseudo-annotated data for adverse drug reaction
classification across drug groups [12.259552039796027]
We assess the robustness of state-of-the-art neural architectures across different drug groups.
We investigate several strategies to use pseudo-labeled data in addition to a manually annotated train set.
arXiv Detail & Related papers (2021-11-24T13:11:05Z) - Discovering Drug-Target Interaction Knowledge from Biomedical Literature [107.98712673387031]
The Interaction between Drugs and Targets (DTI) in human body plays a crucial role in biomedical science and applications.
As millions of papers come out every year in the biomedical domain, automatically discovering DTI knowledge from literature becomes an urgent demand in the industry.
We explore the first end-to-end solution for this task by using generative approaches.
We regard the DTI triplets as a sequence and use a Transformer-based model to directly generate them without using the detailed annotations of entities and relations.
arXiv Detail & Related papers (2021-09-27T17:00:14Z) - Drug Recommendation System based on Sentiment Analysis of Drug Reviews
using Machine Learning [0.0]
We build a medicine recommendation system that uses patient reviews to predict the sentiment using various vectorization processes like Bow, TFIDF, Word2Vec, and Manual Feature Analysis.
The results show that LinearSVC using TFIDF vectorization outperforms all other models with 93% accuracy.
arXiv Detail & Related papers (2021-03-24T10:11:18Z) - A Review of Biomedical Datasets Relating to Drug Discovery: A Knowledge
Graph Perspective [4.746544835197422]
We aim to help guide machine learning and knowledge graph practitioners who are interested in applying new techniques to the drug discovery field.
We detail publicly available primary data sources containing information suitable for use in constructing various drug discovery focused knowledge graphs.
arXiv Detail & Related papers (2021-02-19T17:49:38Z) - Neural networks for Anatomical Therapeutic Chemical (ATC) [83.73971067918333]
We propose combining multiple multi-label classifiers trained on distinct sets of features, including sets extracted from a Bidirectional Long Short-Term Memory Network (BiLSTM)
Experiments demonstrate the power of this approach, which is shown to outperform the best methods reported in the literature.
arXiv Detail & Related papers (2021-01-22T19:49:47Z) - Sentiment Analysis in Drug Reviews using Supervised Machine Learning
Algorithms [1.14219428942199]
We had chosen to work on analyzing reviews of various drugs which have been reviewed in form of texts.
We had trained models on the most popular conditions such as "Birth Control", "Depression" and "Pain"
Our intention was mainly to implement supervised machine learning classification algorithms that predict the class of the rating.
arXiv Detail & Related papers (2020-03-21T20:13:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.