Neural networks for Anatomical Therapeutic Chemical (ATC)
- URL: http://arxiv.org/abs/2101.11713v1
- Date: Fri, 22 Jan 2021 19:49:47 GMT
- Title: Neural networks for Anatomical Therapeutic Chemical (ATC)
- Authors: Loris Nanni, Alessandra Lumini and Sheryl Brahnam
- Abstract summary: We propose combining multiple multi-label classifiers trained on distinct sets of features, including sets extracted from a Bidirectional Long Short-Term Memory Network (BiLSTM)
Experiments demonstrate the power of this approach, which is shown to outperform the best methods reported in the literature.
- Score: 83.73971067918333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivation: Automatic Anatomical Therapeutic Chemical (ATC) classification is
a critical and highly competitive area of research in bioinformatics because of
its potential for expediting drug develop-ment and research. Predicting an
unknown compound's therapeutic and chemical characteristics ac-cording to how
these characteristics affect multiple organs/systems makes automatic ATC
classifica-tion a challenging multi-label problem. Results: In this work, we
propose combining multiple multi-label classifiers trained on distinct sets of
features, including sets extracted from a Bidirectional Long Short-Term Memory
Network (BiLSTM). Experiments demonstrate the power of this approach, which is
shown to outperform the best methods reported in the literature, including the
state-of-the-art developed by the fast.ai research group. Availability: All
source code developed for this study is available at
https://github.com/LorisNanni. Contact: loris.nanni@unipd.it
Related papers
- Functional Classification of Spiking Signal Data Using Artificial
Intelligence Techniques: A Review [8.320333033425475]
This review discusses the importance and use of AI in spike classification, focusing on the recognition of neural activity noises.
The primary goal is to provide a perspective on spike classification for future research and provide a comprehensive understanding of the methodologies and issues involved.
arXiv Detail & Related papers (2024-09-26T03:50:55Z) - Unlocking Potential Binders: Multimodal Pretraining DEL-Fusion for Denoising DNA-Encoded Libraries [51.72836644350993]
Multimodal Pretraining DEL-Fusion model (MPDF)
We develop pretraining tasks applying contrastive objectives between different compound representations and their text descriptions.
We propose a novel DEL-fusion framework that amalgamates compound information at the atomic, submolecular, and molecular levels.
arXiv Detail & Related papers (2024-09-07T17:32:21Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
A major challenge for AI-driven drug discovery is the scarcity of high-quality data.
We develop a formula enhanced mul-ti-task learning (PEMAL) method that predicts four key parameters of pharmacokinetics simultaneously.
Our experiments reveal that PEMAL significantly lowers the data demand, compared to typical Graph Neural Networks.
arXiv Detail & Related papers (2024-04-16T07:42:55Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
We propose a universal cell nucleus classification framework (UniCell)
It employs a novel prompt learning mechanism to uniformly predict the corresponding categories of pathological images from different dataset domains.
In particular, our framework adopts an end-to-end architecture for nuclei detection and classification, and utilizes flexible prediction heads for adapting various datasets.
arXiv Detail & Related papers (2024-02-20T11:50:27Z) - Neurosymbolic AI for Reasoning on Biomedical Knowledge Graphs [0.9085310904484414]
Biomedical datasets are often modeled as knowledge graphs (KGs) because they capture the multi-relational, heterogeneous, and dynamic natures of biomedical systems.
KG completion (KGC), can, therefore, help researchers make predictions to inform tasks like drug repositioning.
arXiv Detail & Related papers (2023-07-17T11:47:05Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - BioRED: A Comprehensive Biomedical Relation Extraction Dataset [6.915371362219944]
We present BioRED, a first-of-its-kind biomedical RE corpus with multiple entity types and relation pairs.
We label each relation as describing either a novel finding or previously known background knowledge, enabling automated algorithms to differentiate between novel and background information.
Our results show that while existing approaches can reach high performance on the NER task, there is much room for improvement for the RE task.
arXiv Detail & Related papers (2022-04-08T19:23:49Z) - DeepDDS: deep graph neural network with attention mechanism to predict
synergistic drug combinations [0.9854322576538699]
computational screening has become an important way to prioritize drug combinations.
DeepDDS was superior to competitive methods by more than 16% predictive precision.
arXiv Detail & Related papers (2021-07-06T08:25:43Z) - Stochastic-based Neural Network hardware acceleration for an efficient
ligand-based virtual screening [0.6431253679501663]
Virtual Screening studies how to identify molecular compounds with the highest probability to present biological activity for a therapeutic target.
Due to the vast number of small organic compounds and the thousands of targets for which such large-scale screening can potentially be carried out, there has been an increasing interest in the research community to increase both, processing speed and energy efficiency in the screening of molecular databases.
In this work, we present a classification model describing each molecule with a single energy-based vector and propose a machine-learning system based on the use of ANNs.
arXiv Detail & Related papers (2020-06-03T20:18:15Z) - Adversarial Feature Hallucination Networks for Few-Shot Learning [84.31660118264514]
Adversarial Feature Hallucination Networks (AFHN) is based on conditional Wasserstein Generative Adversarial networks (cWGAN)
Two novel regularizers are incorporated into AFHN to encourage discriminability and diversity of the synthesized features.
arXiv Detail & Related papers (2020-03-30T02:43:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.