論文の概要: EasyACIM: An End-to-End Automated Analog CIM with Synthesizable Architecture and Agile Design Space Exploration
- arxiv url: http://arxiv.org/abs/2404.13062v1
- Date: Fri, 12 Apr 2024 08:12:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-28 11:25:01.604090
- Title: EasyACIM: An End-to-End Automated Analog CIM with Synthesizable Architecture and Agile Design Space Exploration
- Title(参考訳): EasyACIM: シンセサイザブルアーキテクチャとアジャイルデザインスペース探索を備えた、エンドツーエンドのアナログCIM
- Authors: Haoyi Zhang, Jiahao Song, Xiaohan Gao, Xiyuan Tang, Yibo Lin, Runsheng Wang, Ru Huang,
- Abstract要約: 本研究は、合成可能なアーキテクチャ(EasyACIM)に基づくエンドツーエンド自動ACIMを提案する。
EasyACIMは、様々な設計仕様でACIMのレイアウトを自動的に生成できる。
EasyACIMが提供するACIMソリューションは、最先端(SOTA)ACIMと比較して、幅広い設計空間と競争性能を有する。
- 参考スコア(独自算出の注目度): 4.31899314328104
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Analog Computing-in-Memory (ACIM) is an emerging architecture to perform efficient AI edge computing. However, current ACIM designs usually have unscalable topology and still heavily rely on manual efforts. These drawbacks limit the ACIM application scenarios and lead to an undesired time-to-market. This work proposes an end-to-end automated ACIM based on a synthesizable architecture (EasyACIM). With a given array size and customized cell library, EasyACIM can generate layouts for ACIMs with various design specifications end-to-end automatically. Leveraging the multi-objective genetic algorithm (MOGA)-based design space explorer, EasyACIM can obtain high-quality ACIM solutions based on the proposed synthesizable architecture, targeting versatile application scenarios. The ACIM solutions given by EasyACIM have a wide design space and competitive performance compared to the state-of-the-art (SOTA) ACIMs.
- Abstract(参考訳): アナログ・コンピューティング・イン・メモリ(ACIM)は、効率的なAIエッジ・コンピューティングを実現するための新しいアーキテクチャである。
しかしながら、現在のACIMの設計は、通常、拡張不可能なトポロジーを持ち、依然として手作業に大きく依存している。
これらの欠点はACIMアプリケーションのシナリオを制限し、望ましくない市場へのタイム・ツー・マーケットにつながる。
本研究は、合成可能なアーキテクチャ(EasyACIM)に基づくエンドツーエンドの自動ACIMを提案する。
配列のサイズとカスタマイズされたセルライブラリにより、EasyACIMはACIMのレイアウトを生成することができる。
多目的遺伝的アルゴリズム(MOGA)をベースとしたデザインスペースエクスプローラーを用いて、EasyACIMは、汎用的なアプリケーションシナリオをターゲットにした、提案された合成可能なアーキテクチャに基づく高品質なACIMソリューションを得ることができる。
EasyACIMが提供するACIMソリューションは、最先端(SOTA)ACIMと比較して、幅広い設計空間と競争性能を有する。
関連論文リスト
- AMSnet-KG: A Netlist Dataset for LLM-based AMS Circuit Auto-Design Using Knowledge Graph RAG [15.61553255884534]
大型言語モデル(LLM)は電子設計自動化(EDA)アプリケーションのための強力なツールとして登場した。
本稿では,様々なAMS回路スキーマとネットリストを含むデータセットであるAMSnet-KGを紹介する。
LLMに埋め込まれた包括的知識を利用する自動AMS回路生成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-07T02:49:53Z) - Optimizing Token Usage on Large Language Model Conversations Using the Design Structure Matrix [49.1574468325115]
大規模言語モデルは、多くの分野やタスクにおいてユビキタスになる。
トークンの使用を減らすこと、短いコンテキストウィンドウ、限られた出力サイズ、トークンの取り込みと生成に関連するコストといった課題を克服する必要がある。
この作業は、エンジニアリング設計の分野からLLM会話最適化にデザイン構造マトリックスをもたらす。
論文 参考訳(メタデータ) (2024-10-01T14:38:36Z) - PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM [58.67882997399021]
本研究では,グラフィックレイアウトの自動生成のための統合フレームワークを提案する。
データ駆動方式では、レイアウトを生成するために構造化テキスト(JSONフォーマット)とビジュアルインストラクションチューニングを用いる。
我々は、大規模な実験を行い、パブリックなマルチモーダルレイアウト生成ベンチマーク上で、最先端(SOTA)性能を達成した。
論文 参考訳(メタデータ) (2024-06-05T03:05:52Z) - AMSNet: Netlist Dataset for AMS Circuits [8.601352527168821]
我々は、スキーマをネットリストに変換する自動手法を開発し、データセットAMSNetを作成する。
サイズが大きくなるにつれて、AMSNetはAMS回路設計におけるMLLMアプリケーションの探索を著しく容易にする。
論文 参考訳(メタデータ) (2024-05-15T02:46:04Z) - Mechanistic Design and Scaling of Hybrid Architectures [114.3129802943915]
我々は、様々な計算プリミティブから構築された新しいハイブリッドアーキテクチャを特定し、テストする。
本研究では,大規模計算最適法則と新しい状態最適スケーリング法則解析を用いて,結果のアーキテクチャを実験的に検証する。
我々は,MAD合成法と計算-最適パープレキシティを相関させ,新しいアーキテクチャの正確な評価を可能にする。
論文 参考訳(メタデータ) (2024-03-26T16:33:12Z) - Using the Abstract Computer Architecture Description Language to Model
AI Hardware Accelerators [77.89070422157178]
AI統合製品の製造者は、製品のパフォーマンス要件に適合するアクセラレータを選択するという、重大な課題に直面します。
抽象コンピュータアーキテクチャ記述言語(ACADL)は、コンピュータアーキテクチャブロック図の簡潔な形式化である。
本稿では,AIハードウェアアクセラレーションのモデル化にACADLを用いること,DNNのマッピングにACADL記述を使用し,タイミングシミュレーションのセマンティクスを解説し,性能評価結果の収集を行う。
論文 参考訳(メタデータ) (2024-01-30T19:27:16Z) - CIM-MLC: A Multi-level Compilation Stack for Computing-In-Memory Accelerators [10.756046653406296]
汎用CIMアーキテクチャのための汎用多レベルコンパイルフレームワークであるCIM-MLCを提案する。
CIM-MLCは、複数のアーキテクチャ層にわたるマッピングとスケジューリング戦略を探索することができる。
論文 参考訳(メタデータ) (2024-01-23T01:33:09Z) - CLSA-CIM: A Cross-Layer Scheduling Approach for Computing-in-Memory
Architectures [0.1747623282473278]
CIMアーキテクチャの階層間スケジューリングアルゴリズムであるCLSA-CIMを提案する。
CLSA-CIMと既存の重み付け戦略を統合し,SOTA(State-of-the-art)スケジューリングアルゴリズムとの比較を行った。
論文 参考訳(メタデータ) (2024-01-15T13:35:21Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
マイクロプロセッサアーキテクトは、高性能でエネルギー効率の追求において、ドメイン固有のカスタマイズにますます頼っている。
この問題に対処するために,Multi-Agent RL (MARL) を利用した別の定式化を提案する。
評価の結果,MARLの定式化は単エージェントRLのベースラインよりも一貫して優れていた。
論文 参考訳(メタデータ) (2022-11-29T17:10:24Z) - AutoCoMet: Smart Neural Architecture Search via Co-Regulated Shaping
Reinforcement [5.026843258629663]
AutoCoMetは、さまざまなタイプのデバイスハードウェアとタスクコンテキストに最適化された最も適切なディープモデルアーキテクチャを3倍高速に学習する。
我々は,高忠実度ハードウェアメタビヘイビア予測器と協調して,スマートで高速なNASフレームワークを構築した。
論文 参考訳(メタデータ) (2022-03-29T10:11:22Z) - Elastic Architecture Search for Diverse Tasks with Different Resources [87.23061200971912]
本研究では,異なるリソースを持つ多様なタスクを効率的に配置する上で,クラス群に対応するリソース制約や関心のタスクをテスト時に動的に指定する,新たな課題について検討する。
従来のNASアプローチでは、全てのクラスのアーキテクチャを同時に設計することを模索しており、これはいくつかの個別のタスクに最適ではないかもしれない。
本稿では、様々なリソース制約のある多様なタスクに対して、実行時に即時特殊化を可能にする、Elastic Architecture Search (EAS)と呼ばれる斬新で一般的なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-03T00:54:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。