論文の概要: SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs
- arxiv url: http://arxiv.org/abs/2404.13081v1
- Date: Wed, 17 Apr 2024 01:15:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 20:28:09.566287
- Title: SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs
- Title(参考訳): SuRe: LLMのオープンドメインQAに対する回答候補を用いた検索の要約
- Authors: Jaehyung Kim, Jaehyun Nam, Sangwoo Mo, Jongjin Park, Sang-Woo Lee, Minjoon Seo, Jung-Woo Ha, Jinwoo Shin,
- Abstract要約: 大規模言語モデル(LLM)を用いたオープンドメイン質問応答(ODQA)の簡易かつ効果的なフレームワークを提案する。
SuRe は LLM が与えられた質問に対するより正確な回答を予測するのに役立つ。
様々なODQAベンチマークの実験結果はSuReの優位性を示し、標準的なプロンプトアプローチよりも4.6%、F1スコアが4.0%向上した。
- 参考スコア(独自算出の注目度): 85.54906813106683
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models (LLMs) have made significant advancements in various natural language processing tasks, including question answering (QA) tasks. While incorporating new information with the retrieval of relevant passages is a promising way to improve QA with LLMs, the existing methods often require additional fine-tuning which becomes infeasible with recent LLMs. Augmenting retrieved passages via prompting has the potential to address this limitation, but this direction has been limitedly explored. To this end, we design a simple yet effective framework to enhance open-domain QA (ODQA) with LLMs, based on the summarized retrieval (SuRe). SuRe helps LLMs predict more accurate answers for a given question, which are well-supported by the summarized retrieval that could be viewed as an explicit rationale extracted from the retrieved passages. Specifically, SuRe first constructs summaries of the retrieved passages for each of the multiple answer candidates. Then, SuRe confirms the most plausible answer from the candidate set by evaluating the validity and ranking of the generated summaries. Experimental results on diverse ODQA benchmarks demonstrate the superiority of SuRe, with improvements of up to 4.6% in exact match (EM) and 4.0% in F1 score over standard prompting approaches. SuRe also can be integrated with a broad range of retrieval methods and LLMs. Finally, the generated summaries from SuRe show additional advantages to measure the importance of retrieved passages and serve as more preferred rationales by models and humans.
- Abstract(参考訳): 大規模言語モデル(LLM)は、質問応答(QA)タスクを含む様々な自然言語処理タスクにおいて大きな進歩を遂げている。
関連パスの検索に新たな情報を導入することは、LLMによるQAを改善するための有望な方法であるが、既存の手法では、最近のLLMでは不可能となる追加の微調整が必要となることが多い。
抽出された経路をプロンプトによって拡張することは、この制限に対処する可能性があるが、この方向は限定的に検討されている。
この目的のために我々は,要約検索(SuRe)に基づいて,オープンドメインQA(ODQA)をLLMで拡張する,シンプルで効果的なフレームワークを設計する。
SuRe は LLM が与えられた質問に対してより正確な答えを予測するのに役立つ。
具体的には、SuReはまず、複数の回答候補のそれぞれに対して、検索したパスの要約を構築する。
次に、SuReは、生成した要約の妥当性とランキングを評価することにより、設定した候補から最も妥当な回答を確認する。
様々なODQAベンチマークの実験結果はSuReの優位性を示し、標準的なプロンプトアプローチよりも4.6%、F1スコアが4.0%向上した。
SuReは広い範囲の検索方法やLLMと統合することもできる。
最後に、SuReから生成された要約は、検索された通路の重要性を計測し、モデルや人間によるより好ましい論理として機能する追加の利点を示している。
関連論文リスト
- Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
Invar-RAGと呼ばれる2段階ファインチューニングアーキテクチャを提案する。
検索段階では、LORAに基づく表現学習を統合してLLMベースの検索器を構築する。
生成段階では、抽出した情報に基づいて回答を生成する際のLCM精度を向上させるための精細調整法が用いられる。
論文 参考訳(メタデータ) (2024-11-11T14:25:37Z) - Grounding by Trying: LLMs with Reinforcement Learning-Enhanced Retrieval [55.63711219190506]
大きな言語モデル(LLM)は、しばしば適切な検索クエリのポーズに苦労する。
私たちは$underlineLe$arningを$underlineRe$trieveに$underlineT$rying (LeReT)を導入します。
LeReTは、絶対精度を最大29%向上し、下流ジェネレータの評価を17%向上させることができる。
論文 参考訳(メタデータ) (2024-10-30T17:02:54Z) - W-RAG: Weakly Supervised Dense Retrieval in RAG for Open-domain Question Answering [28.79851078451609]
大規模言語モデル(LLM)は、内部(パラメトリック)知識にのみ依存して、事実的な回答を生成するのに苦労することが多い。
この制限に対処するため、Retrieval-Augmented Generation (RAG)システムでは、外部ソースから関連情報を検索することでLLMを強化している。
我々はLLMのランキング機能を活用してW-RAGを提案する。
論文 参考訳(メタデータ) (2024-08-15T22:34:44Z) - Passage-specific Prompt Tuning for Passage Reranking in Question Answering with Large Language Models [11.716595438057997]
オープンドメイン質問応答(PSPT)における再ランク付けのためのパス固有プロンプトチューニングを提案する。
PSPTは、学習可能なパス固有のソフトプロンプトを微調整するパラメータ効率の手法である。
我々は,Llama-2-chat-7Bモデルを用いた3つの公開領域質問応答データセットの広範な実験を行った。
論文 参考訳(メタデータ) (2024-05-31T07:43:42Z) - Effective Large Language Model Adaptation for Improved Grounding and Citation Generation [48.07830615309543]
本稿では,検索した文の応答を基底にして,引用を提供することにより,大規模言語モデル(LLM)の改善に焦点を当てる。
我々は、全体論的観点から基盤を改善する新しいフレームワーク AGREE を提案する。
我々のフレームワークは, LLMを調整し, その要求を自己評価し, 検索した文書に正確な引用を提供する。
論文 参考訳(メタデータ) (2023-11-16T03:22:25Z) - Revisiting Large Language Models as Zero-shot Relation Extractors [8.953462875381888]
リレーショナル抽出(RE)は、ゼロショット設定下であっても、一定のラベル付きまたはラベルなしのデータを一貫して含む。
近年の研究では、大きな言語モデル(LLM)が、単に自然言語のプロンプトを与えられただけで、新しいタスクにうまく移行していることが示されている。
本研究はゼロショット関係抽出器としてLLMを探索することに焦点を当てる。
論文 参考訳(メタデータ) (2023-10-08T06:17:39Z) - DQ-LoRe: Dual Queries with Low Rank Approximation Re-ranking for
In-Context Learning [66.85379279041128]
そこで本研究では,Dual Queries と Low-rank approximation Re- rank を利用して,文脈内学習のための例を自動選択するフレームワークを提案する。
DQ-LoRe は GPT-4 の自動選択において最先端の手法よりも優れ、92.5% から94.2% まで性能が向上した。
論文 参考訳(メタデータ) (2023-10-04T16:44:37Z) - Modeling Uncertainty and Using Post-fusion as Fallback Improves Retrieval Augmented Generation with LLMs [80.74263278847063]
検索されたパスと大きな言語モデル(LLM)の統合は、オープンドメインの質問応答の改善に大きく貢献している。
本稿では,検索したパスをLLMと組み合わせて回答生成を向上させる方法について検討する。
論文 参考訳(メタデータ) (2023-08-24T05:26:54Z) - Query Rewriting for Retrieval-Augmented Large Language Models [139.242907155883]
大規模言語モデル(LLM)は、検索対象のパイプラインで強力なブラックボックスリーダーを動作させる。
この作業では、検索拡張LDMに対する以前の検索テーマ読み込みの代わりに、新しいフレームワークであるRewrite-Retrieve-Readを導入する。
論文 参考訳(メタデータ) (2023-05-23T17:27:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。