論文の概要: Demystifying Legalese: An Automated Approach for Summarizing and Analyzing Overlaps in Privacy Policies and Terms of Service
- arxiv url: http://arxiv.org/abs/2404.13087v1
- Date: Wed, 17 Apr 2024 19:53:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 20:28:09.501366
- Title: Demystifying Legalese: An Automated Approach for Summarizing and Analyzing Overlaps in Privacy Policies and Terms of Service
- Title(参考訳): Demystifying Legalese:プライバシポリシとサービス条件のオーバーラップを要約し分析するための自動化アプローチ
- Authors: Shikha Soneji, Mitchell Hoesing, Sujay Koujalgi, Jonathan Dodge,
- Abstract要約: 我々の研究は、このような文書に自動でアクセス可能な要約とスコアを提供する言語モデルを開発することで、この問題を軽減することを目指している。
我々はデータセットのトレーニング中にトランスフォーマーベースのモデルと従来のモデルを比較し、RoBERTaは0.74F1スコアで全体的なパフォーマンスを改善した。
- 参考スコア(独自算出の注目度): 0.6240153531166704
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The complexities of legalese in terms and policy documents can bind individuals to contracts they do not fully comprehend, potentially leading to uninformed data sharing. Our work seeks to alleviate this issue by developing language models that provide automated, accessible summaries and scores for such documents, aiming to enhance user understanding and facilitate informed decisions. We compared transformer-based and conventional models during training on our dataset, and RoBERTa performed better overall with a remarkable 0.74 F1-score. Leveraging our best-performing model, RoBERTa, we highlighted redundancies and potential guideline violations by identifying overlaps in GDPR-required documents, underscoring the necessity for stricter GDPR compliance.
- Abstract(参考訳): 法律の用語や政策文書の複雑さは、完全に理解されていない契約に個人を縛り付けることができ、おそらくは非情報共有につながる。
本研究は,このような文書に自動でアクセス可能な要約とスコアを提供する言語モデルを開発し,ユーザの理解を深め,情報的意思決定を促進することを目的としている。
我々はデータセットのトレーニング中にトランスフォーマーベースのモデルと従来のモデルを比較し、RoBERTaは0.74F1スコアで全体的なパフォーマンスを改善した。
最高のパフォーマンスモデルであるRoBERTaを活用して、GDPRが要求するドキュメントの重複を特定し、より厳格なGDPRコンプライアンスの必要性を強調することで、冗長性と潜在的ガイドライン違反を強調しました。
関連論文リスト
- Enhancing Legal Case Retrieval via Scaling High-quality Synthetic Query-Candidate Pairs [67.54302101989542]
判例検索は、ある事実記述の参照として類似した事例を提供することを目的としている。
既存の作業は主に、長いクエリを使ったケース・ツー・ケースの検索に重点を置いている。
データスケールは、既存のデータハングリーニューラルネットワークのトレーニング要件を満たすには不十分である。
論文 参考訳(メタデータ) (2024-10-09T06:26:39Z) - Privacy Policy Analysis through Prompt Engineering for LLMs [3.059256166047627]
PAPEL (Privacy Policy Analysis through Prompt Engineering for LLMs) は、Large Language Models (LLMs) の力を利用してプライバシーポリシーの分析を自動化するフレームワークである。
これらのポリシーからの情報の抽出、アノテーション、要約を合理化し、追加のモデルトレーニングを必要とせず、アクセシビリティと理解性を高めることを目的としている。
PAPELの有効性を, (i) アノテーションと (ii) 矛盾解析の2つの応用で実証した。
論文 参考訳(メタデータ) (2024-09-23T10:23:31Z) - Rethinking Legal Compliance Automation: Opportunities with Large Language Models [2.9088208525097365]
我々は、(テキスト)法的アーティファクトの試験は、まず文よりも広い文脈で行うべきであると論じる。
これらの制約に対処するために,コンプライアンス分析手法を提案する。
論文 参考訳(メタデータ) (2024-04-22T17:10:27Z) - KamerRaad: Enhancing Information Retrieval in Belgian National Politics through Hierarchical Summarization and Conversational Interfaces [55.00702535694059]
KamerRaadは、大きな言語モデルを活用するAIツールで、市民がベルギーの政治情報と対話的に関わるのを助ける。
このツールは、議会の手続きから重要な抜粋を抽出し、簡潔に要約し、次いで生成AIに基づくインタラクションの可能性を示す。
論文 参考訳(メタデータ) (2024-04-22T15:01:39Z) - Modelling Technique for GDPR-compliance: Toward a Comprehensive Solution [0.0]
EU/UKにおける新たなデータ保護法が施行された。
既存の脅威モデリング技術は、コンプライアンスをモデル化するために設計されていない。
非コンプライアンス脅威に対する知識基盤の原則と統合した新しいデータフローを提案する。
論文 参考訳(メタデータ) (2024-04-22T08:41:43Z) - Towards an Enforceable GDPR Specification [49.1574468325115]
プライバシ・バイ・デザイン(PbD)は、EUなどの現代的なプライバシー規制によって規定されている。
PbDを実現する1つの新しい技術は強制(RE)である
法律規定の正式な仕様を作成するための一連の要件と反復的な方法論を提示する。
論文 参考訳(メタデータ) (2024-02-27T09:38:51Z) - Relational Action Bases: Formalization, Effective Safety Verification,
and Invariants (Extended Version) [67.99023219822564]
我々はリレーショナルアクションベース(RAB)の一般的な枠組みを紹介する。
RABは両方の制限を解除することで既存のモデルを一般化する。
データ対応ビジネスプロセスのベンチマークにおいて、このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-08-12T17:03:50Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - Investigating Crowdsourcing Protocols for Evaluating the Factual
Consistency of Summaries [59.27273928454995]
要約に適用される現在の事前学習モデルは、ソーステキストを誤って表現したり、外部情報を導入したりする事実上の矛盾がちである。
評価ベースのLikertスケールとランキングベースのBest-Worst Scalingプロトコルを用いた,事実整合性のためのクラウドソーシング評価フレームワークを構築した。
ランキングベースのプロトコルは、データセット間の要約品質をより信頼性の高い尺度を提供するのに対して、Likertレーティングの信頼性はターゲットデータセットと評価設計に依存する。
論文 参考訳(メタデータ) (2021-09-19T19:05:00Z) - Compliance Generation for Privacy Documents under GDPR: A Roadmap for
Implementing Automation and Machine Learning [2.1485350418225244]
Privatechプロジェクトはコンプライアンスのエージェントとして企業や法律会社に焦点を当てている。
データプロセッサはコンプライアンスの評価と文書化のために説明責任対策を実行しなければならない。
コンプライアンスの問題を特定し,コンプライアンス評価と生成のロードマップを提供する。
論文 参考訳(メタデータ) (2020-12-23T14:46:51Z) - Towards a Semantic Model of the GDPR Register of Processing Activities [0.3441021278275805]
分析テンプレート間の共通概念と関係に基づく統合データモデルを提案する。
DPVは現在、ROPAデータモデルを表現するのに十分な概念を提供していません。
これにより、組織と規制機関間のコンプライアンスのためのパンEU情報管理フレームワークの作成が可能になる。
論文 参考訳(メタデータ) (2020-08-03T13:54:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。