Gauged Gaussian PEPS -- A High Dimensional Tensor Network Formulation for Lattice Gauge Theories
- URL: http://arxiv.org/abs/2404.13123v2
- Date: Fri, 11 Oct 2024 07:04:22 GMT
- Title: Gauged Gaussian PEPS -- A High Dimensional Tensor Network Formulation for Lattice Gauge Theories
- Authors: Ariel Kelman, Umberto Borla, Itay Gomelski, Jonathan Elyovich, Gertian Roose, Patrick Emonts, Erez Zohar,
- Abstract summary: Gauge theories form the basis of our understanding of modern physics.
In the non-perturbative regime, gauge theories are treated discretely as lattice gauge theories.
We present a unified and comprehensive framework for gauged Gaussian Projected Entangled Pair States (PEPS)
- Score: 0.0
- License:
- Abstract: Gauge theories form the basis of our understanding of modern physics - ranging from the description of quarks and gluons to effective models in condensed matter physics. In the non-perturbative regime, gauge theories are conventionally treated discretely as lattice gauge theories. The resulting systems are evaluated with path-integral based Monte Carlo methods. These methods, however, can suffer from the sign problem and do not allow for a direct evaluation of real-time dynamics. In this work, we present a unified and comprehensive framework for gauged Gaussian Projected Entangled Pair States (PEPS), a variational ansatz based on tensor networks. We review the construction of Hamiltonian lattice gauge theories, explain their similarities with PEPS, and detail the construction of the state. The estimation of ground states is based on a variational Monte Carlo procedure with the PEPS as an ansatz state. This sign-problem-free ansatz can be efficiently evaluated in any dimension with arbitrary gauge groups, and can include dynamical fermionic matter, suggesting new options for the simulation of non-perturbative regimes of gauge theories, including QCD.
Related papers
- Anomaly inflow, dualities, and quantum simulation of abelian lattice gauge theories induced by measurements [0.0]
Previous work has demonstrated that quantum simulation of abelian lattice gauge theories can be achieved by local adaptive measurements.
In this work, we explicitly demonstrate the anomaly inflow mechanism between the deconfining phase of the simulated gauge theory on the boundary and the SPT state in the bulk.
We construct the resource state and the measurement pattern for the measurement-based quantum simulation of a lattice gauge theory with a matter field.
arXiv Detail & Related papers (2024-02-13T19:00:04Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - End-To-End Latent Variational Diffusion Models for Inverse Problems in
High Energy Physics [61.44793171735013]
We introduce a novel unified architecture, termed latent variation models, which combines the latent learning of cutting-edge generative art approaches with an end-to-end variational framework.
Our unified approach achieves a distribution-free distance to the truth of over 20 times less than non-latent state-of-the-art baseline.
arXiv Detail & Related papers (2023-05-17T17:43:10Z) - Fermionic Gaussian PEPS in $3+1d$: Rotations and Relativistic Limits [0.0]
Fermionic tensor network state constructions describe the physics of ground states of non-interacting fermionic Hamiltonians.
We show how to generalize such states from two to three spatial dimensions, focusing on spin representations and requirements of lattice rotations.
arXiv Detail & Related papers (2023-04-13T18:00:01Z) - A variational Monte Carlo algorithm for lattice gauge theories with
continuous gauge groups: a study of (2+1)-dimensional compact QED with
dynamical fermions at finite density [0.7734726150561088]
We present a variational, sign-problem-free Monte Carlo method for lattice gauge theories with continuous gauge groups.
We apply it to (2+1)-dimensional compact QED with dynamical fermions at finite density.
arXiv Detail & Related papers (2023-04-12T15:35:57Z) - Keldysh Nonlinear Sigma Model for a Free-Fermion Gas under Continuous
Measurements [1.5974497551212925]
Quantum entanglement phase transitions have provided new insights to quantum many-body dynamics.
We analytically analyze a $d$-dimension free-fermion gas subject to continuous projective measurements.
Our effective theory resembles to that used to describe the disordered fermionic systems.
arXiv Detail & Related papers (2022-07-07T15:31:34Z) - Efficient simulation of Gottesman-Kitaev-Preskill states with Gaussian
circuits [68.8204255655161]
We study the classical simulatability of Gottesman-Kitaev-Preskill (GKP) states in combination with arbitrary displacements, a large set of symplectic operations and homodyne measurements.
For these types of circuits, neither continuous-variable theorems based on the non-negativity of quasi-probability distributions nor discrete-variable theorems can be employed to assess the simulatability.
arXiv Detail & Related papers (2022-03-21T17:57:02Z) - Stochastic normalizing flows as non-equilibrium transformations [62.997667081978825]
We show that normalizing flows provide a route to sample lattice field theories more efficiently than conventional MonteCarlo simulations.
We lay out a strategy to optimize the efficiency of this extended class of generative models and present examples of applications.
arXiv Detail & Related papers (2022-01-21T19:00:18Z) - Boundary theories of critical matchgate tensor networks [59.433172590351234]
Key aspects of the AdS/CFT correspondence can be captured in terms of tensor network models on hyperbolic lattices.
For tensors fulfilling the matchgate constraint, these have previously been shown to produce disordered boundary states.
We show that these Hamiltonians exhibit multi-scale quasiperiodic symmetries captured by an analytical toy model.
arXiv Detail & Related papers (2021-10-06T18:00:03Z) - Quantum Simulation of Conformal Field Theory [77.34726150561087]
We describe a quantum algorithm to simulate the dynamics of conformal field theories.
A full analysis of the approximation errors suggests near-term applicability.
arXiv Detail & Related papers (2021-09-29T06:44:33Z) - Variational Monte Carlo simulation with tensor networks of a pure
$\mathbb{Z}_3$ gauge theory in (2+1)d [0.688204255655161]
Variational minimization of tensor network states enables the exploration of low energy states of lattice gauge theories.
It is possible to efficiently compute physical observables using a variational Monte Carlo procedure.
This is a first proof of principle to the method, which provides an inherent way to increase the number of variational parameters.
arXiv Detail & Related papers (2020-08-03T13:59:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.