論文の概要: Towards Robust Real-Time Hardware-based Mobile Malware Detection using Multiple Instance Learning Formulation
- arxiv url: http://arxiv.org/abs/2404.13125v1
- Date: Fri, 19 Apr 2024 18:28:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 20:18:24.720801
- Title: Towards Robust Real-Time Hardware-based Mobile Malware Detection using Multiple Instance Learning Formulation
- Title(参考訳): マルチインスタンス学習定式化によるロバストリアルタイムハードウェアベースのモバイルマルウェア検出
- Authors: Harshit Kumar, Sudarshan Sharma, Biswadeep Chakraborty, Saibal Mukhopadhyay,
- Abstract要約: 本研究では,モバイルデバイス用ハードウェアベースのマルウェア検出装置RT-HMDを紹介する。
リアルタイムHMDでは、マルウェアの時系列の良質なセグメントが誤ってマルウェアのラベルを継承している。
- 参考スコア(独自算出の注目度): 16.647167616059594
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study introduces RT-HMD, a Hardware-based Malware Detector (HMD) for mobile devices, that refines malware representation in segmented time-series through a Multiple Instance Learning (MIL) approach. We address the mislabeling issue in real-time HMDs, where benign segments in malware time-series incorrectly inherit malware labels, leading to increased false positives. Utilizing the proposed Malicious Discriminative Score within the MIL framework, RT-HMD effectively identifies localized malware behaviors, thereby improving the predictive accuracy. Empirical analysis, using a hardware telemetry dataset collected from a mobile platform across 723 benign and 1033 malware samples, shows a 5% precision boost while maintaining recall, outperforming baselines affected by mislabeled benign segments.
- Abstract(参考訳): 本研究では,モバイル機器用ハードウェアベースのマルウェア検出装置RT-HMDを紹介し,MIL(Multiple Instance Learning)アプローチを用いて,セグメント化された時系列のマルウェア表現を洗練させる。
リアルタイムHMDでは、マルウェアの時系列の良性セグメントが不正にマルウェアラベルを継承し、偽陽性が増加するという誤ラベル問題に対処する。
RT-HMDは、MILフレームワーク内で提案された悪性判別スコアを用いて、局所的なマルウェアの挙動を効果的に識別し、予測精度を向上させる。
723の良性サンプルと1033のマルウェアサンプルにまたがるモバイルプラットフォームから収集されたハードウェアテレメトリデータセットを用いた実証分析では、リコールを維持しながら5%の正確性を示し、誤ラベルされた良性セグメントの影響を受けるベースラインを上回っている。
関連論文リスト
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
マルウェアを識別する強力な識別能力を持つ強力な検出器MASKDROIDを提案する。
我々は、グラフニューラルネットワークベースのフレームワークにマスキング機構を導入し、MASKDROIDに入力グラフ全体の復元を強制する。
この戦略により、モデルは悪意のあるセマンティクスを理解し、より安定した表現を学習し、敵攻撃に対する堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-09-29T07:22:47Z) - Small Effect Sizes in Malware Detection? Make Harder Train/Test Splits! [51.668411293817464]
業界関係者は、モデルが数億台のマシンにデプロイされているため、マルウェア検出精度の小さな改善に気を配っている。
学術研究はしばしば1万のサンプルの順序で公開データセットに制限される。
利用可能なサンプルのプールから難易度ベンチマークを生成するためのアプローチを考案する。
論文 参考訳(メタデータ) (2023-12-25T21:25:55Z) - Discovering Malicious Signatures in Software from Structural
Interactions [7.06449725392051]
本稿では,ディープラーニング,数学的手法,ネットワーク科学を活用する新しいマルウェア検出手法を提案する。
提案手法は静的および動的解析に焦点をあて,LLVM(Lower-Level Virtual Machine)を用いて複雑なネットワーク内のアプリケーションをプロファイリングする。
弊社のアプローチは、マルウェアの検出を大幅に改善し、より正確で効率的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-12-19T23:42:20Z) - Android Malware Detection with Unbiased Confidence Guarantees [1.6432632226868131]
本稿では,マルウェア検出毎に確実な信頼性を保証する機械学習動的解析手法を提案する。
提案手法は、Conformal Predictionと呼ばれる新しい機械学習フレームワークと、ランダムな森林分類器を組み合わせたものである。
実際のアンドロイドデバイスに1866の悪意のある4816の良質なアプリケーションをインストールすることで,大規模なデータセット上での性能を検証した。
論文 参考訳(メタデータ) (2023-12-17T11:07:31Z) - Can Feature Engineering Help Quantum Machine Learning for Malware
Detection? [7.010669841466896]
本稿では,この問題に対処するための理論量子MLのハイブリッドフレームワークを提案する。
XGBoostが選択したVQCは、シミュレータで78.91%の精度でテストできる。
XGBoostで選択した特徴を用いてトレーニングしたモデルの平均精度は74%であった。
論文 参考訳(メタデータ) (2023-05-03T19:33:49Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Sequential Embedding-based Attentive (SEA) classifier for malware
classification [1.290382979353427]
我々は、最先端自然言語処理(NLP)技術を用いたマルウェア検出のソリューションを考案した。
提案モデルでは,それぞれ99.13パーセント,0.04パーセントの精度とログ損失スコアをベンチマークデータセットで検証した。
論文 参考訳(メタデータ) (2023-02-11T15:48:16Z) - Towards a Fair Comparison and Realistic Design and Evaluation Framework
of Android Malware Detectors [63.75363908696257]
一般的な評価フレームワークを用いて,Androidのマルウェア検出に関する10の研究成果を分析した。
データセットの作成やデザイナの設計に考慮しない場合、トレーニングされたMLモデルに大きく影響する5つの要因を特定します。
その結果,MLに基づく検出器は楽観的に評価され,良好な結果が得られた。
論文 参考訳(メタデータ) (2022-05-25T08:28:08Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - ML-based IoT Malware Detection Under Adversarial Settings: A Systematic
Evaluation [9.143713488498513]
本研究は,様々な表現と学習技術を利用した最先端のマルウェア検出手法を体系的に検討する。
本研究では, 剥ぎ取りやパディングなどの機能保存操作によるソフトウェア変異が, 検出精度を著しく低下させることを示した。
論文 参考訳(メタデータ) (2021-08-30T16:54:07Z) - Maat: Automatically Analyzing VirusTotal for Accurate Labeling and
Effective Malware Detection [71.84087757644708]
マルウェア分析と検出の研究コミュニティは、約60台のスキャナーのスキャン結果に基づいてAndroidアプリをラベル付けするために、オンラインプラットフォームVirusTotalに依存している。
VirusTotalから取得したスキャン結果を最もよく解釈する方法の基準はありません。
機械学習(ML)ベースのラベリングスキームを自動生成することで,標準化と持続可能性というこれらの問題に対処する手法であるMaatを実装した。
論文 参考訳(メタデータ) (2020-07-01T14:15:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。