論文の概要: Deep Learning-based Text-in-Image Watermarking
- arxiv url: http://arxiv.org/abs/2404.13134v1
- Date: Fri, 19 Apr 2024 18:52:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 20:18:24.709784
- Title: Deep Learning-based Text-in-Image Watermarking
- Title(参考訳): 深層学習に基づくテキスト・イン・イメージ・ウォーターマーキング
- Authors: Bishwa Karki, Chun-Hua Tsai, Pei-Chi Huang, Xin Zhong,
- Abstract要約: テキスト・イン・イメージ・透かしに対する新しい深層学習手法を提案する。
データセキュリティと整合性を高めるため,画像内にテキスト情報を埋め込んで抽出する。
- 参考スコア(独自算出の注目度): 4.938567115890841
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we introduce a novel deep learning-based approach to text-in-image watermarking, a method that embeds and extracts textual information within images to enhance data security and integrity. Leveraging the capabilities of deep learning, specifically through the use of Transformer-based architectures for text processing and Vision Transformers for image feature extraction, our method sets new benchmarks in the domain. The proposed method represents the first application of deep learning in text-in-image watermarking that improves adaptivity, allowing the model to intelligently adjust to specific image characteristics and emerging threats. Through testing and evaluation, our method has demonstrated superior robustness compared to traditional watermarking techniques, achieving enhanced imperceptibility that ensures the watermark remains undetectable across various image contents.
- Abstract(参考訳): 本研究では,画像内にテキスト情報を埋め込んで抽出し,データのセキュリティと整合性を高める手法である,テキスト・イン・イメージ・ウォーターマーキング(text-in-image watermarking)の新たな深層学習手法を提案する。
ディープラーニングの能力を活用し、特にテキスト処理にTransformerベースのアーキテクチャ、画像特徴抽出にVision Transformerを用いることで、新しいベンチマークをドメイン内に設定する。
提案手法は,適応性を向上させるテキスト・イン・イメージ・ウォーターマーキングにおける深層学習の最初の応用である。
本手法は, 従来の透かし技術に比べ, 透かしが検出不能であることを保証するため, 従来の透かし技術と比較して, 優れた頑健性を示した。
関連論文リスト
- UNIT: Unifying Image and Text Recognition in One Vision Encoder [51.140564856352825]
UNITは、単一のモデル内で画像とテキストの認識を統一することを目的とした、新しいトレーニングフレームワークである。
文書関連タスクにおいて,UNITが既存の手法を著しく上回ることを示す。
注目すべきなのは、UNITはオリジナルのビジョンエンコーダアーキテクチャを保持しており、推論とデプロイメントの点で費用がかからないことだ。
論文 参考訳(メタデータ) (2024-09-06T08:02:43Z) - SWIFT: Semantic Watermarking for Image Forgery Thwarting [12.515429388063534]
我々は、画像キャプションを表す高次元実ベクトルを埋め込んで抽出するために、HiDDeNディープラーニング透かしアーキテクチャを変更した。
本手法は良性編集と良性編集の両方において有意に改善する。
論文 参考訳(メタデータ) (2024-07-26T09:50:13Z) - Efficiently Leveraging Linguistic Priors for Scene Text Spotting [63.22351047545888]
本稿では,大規模テキストコーパスから言語知識を活用する手法を提案する。
シーンテキストデータセットとよく一致したテキスト分布を生成し、ドメイン内の微調整の必要性を取り除く。
実験結果から,本手法は認識精度を向上するだけでなく,単語のより正確な局所化を可能にすることが示された。
論文 参考訳(メタデータ) (2024-02-27T01:57:09Z) - Robust Image Watermarking based on Cross-Attention and Invariant Domain
Learning [1.6589012298747952]
本稿では,クロスアテンションと不変領域学習を利用して,ロバストな画像透かし手法を提案する。
マルチヘッドクロスアテンション機構を用いた透かし埋め込み方式を設計し,表紙画像と透かしとの情報交換を可能にする。
第2に,透かしに関する意味的情報と雑音的不変情報の両方をカプセル化した不変領域表現の学習を提唱する。
論文 参考訳(メタデータ) (2023-10-09T04:19:27Z) - T2IW: Joint Text to Image & Watermark Generation [74.20148555503127]
画像と透かし(T2IW)への共同テキスト生成のための新しいタスクを提案する。
このT2IWスキームは、意味的特徴と透かし信号が画素内で互換性を持つように強制することにより、複合画像を生成する際に、画像品質に最小限のダメージを与える。
提案手法により,画像品質,透かしの可視性,透かしの堅牢性などの顕著な成果が得られた。
論文 参考訳(メタデータ) (2023-09-07T16:12:06Z) - Orientation-Independent Chinese Text Recognition in Scene Images [61.34060587461462]
本研究は,テキスト画像のコンテンツと方向情報を切り離すことにより,向きに依存しない視覚特徴を抽出する試みである。
具体的には,不整合コンテンツと向き情報を用いて対応する文字イメージを復元する文字画像再構成ネットワーク(CIRN)を提案する。
論文 参考訳(メタデータ) (2023-09-03T05:30:21Z) - Semantic-Preserving Augmentation for Robust Image-Text Retrieval [27.2916415148638]
RVSEは、画像のセマンティック保存強化(SPAugI)とテキスト(SPAugT)という、新しい画像ベースおよびテキストベースの拡張技術からなる。
SPAugIとSPAugTは、その意味情報が保存されるように元のデータを変更するため、特徴抽出器を強制して意味を意識した埋め込みベクトルを生成する。
ベンチマークデータセットを用いた広範囲な実験から、RVSEは画像テキスト検索性能において従来の検索手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-03-10T03:50:44Z) - Reading and Writing: Discriminative and Generative Modeling for
Self-Supervised Text Recognition [101.60244147302197]
テキスト画像の識別と生成を学習するために,コントラスト学習とマスク付き画像モデリングを導入する。
本手法は,不規則なシーンテキスト認識データセットにおいて,従来の自己教師付きテキスト認識手法を10.2%~20.2%向上させる。
提案したテキスト認識器は,11のベンチマークで平均5.3%の精度で従来のテキスト認識手法を上回り,モデルサイズが類似している。
論文 参考訳(メタデータ) (2022-07-01T03:50:26Z) - Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors [58.71128866226768]
近年のテキスト・ツー・イメージ生成手法は、生成した画像の忠実度とテキスト関連性を漸進的に改善している。
i)シーンの形式でテキストを補完する単純な制御機構を実現することで,これらのギャップに対処する新しいテキスト・ツー・イメージ手法を提案する。
このモデルにより,512×512ピクセルの解像度で高忠実度画像を生成することができる。
論文 参考訳(メタデータ) (2022-03-24T15:44:50Z) - Learning Transformation-Aware Embeddings for Image Forensics [15.484408315588569]
Image Provenance Analysisは、コンテンツを共有するさまざまな操作されたイメージバージョン間の関係を見つけることを目的としている。
証明分析のための主要なサブプロブレムの1つは、完全なコンテンツを共有したり、ほぼ重複している画像の編集順序である。
本稿では,1つの画像から生成した画像に対して,変換を通じて妥当な順序付けを行うための,新しい深層学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-13T22:01:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。