論文の概要: Explainable AI for Fair Sepsis Mortality Predictive Model
- arxiv url: http://arxiv.org/abs/2404.13139v1
- Date: Fri, 19 Apr 2024 18:56:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 20:18:24.707101
- Title: Explainable AI for Fair Sepsis Mortality Predictive Model
- Title(参考訳): フェアシープシスの死亡予測モデルのための説明可能なAI
- Authors: Chia-Hsuan Chang, Xiaoyang Wang, Christopher C. Yang,
- Abstract要約: 本稿では、性能最適化予測モデルを学習し、転送学習プロセスを用いて、より公正なモデルを生成する方法を提案する。
我々の手法は、予測モデル内のバイアスを特定し緩和するだけでなく、医療関係者間の信頼を高める。
- 参考スコア(独自算出の注目度): 3.556697333718976
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence supports healthcare professionals with predictive modeling, greatly transforming clinical decision-making. This study addresses the crucial need for fairness and explainability in AI applications within healthcare to ensure equitable outcomes across diverse patient demographics. By focusing on the predictive modeling of sepsis-related mortality, we propose a method that learns a performance-optimized predictive model and then employs the transfer learning process to produce a model with better fairness. Our method also introduces a novel permutation-based feature importance algorithm aiming at elucidating the contribution of each feature in enhancing fairness on predictions. Unlike existing explainability methods concentrating on explaining feature contribution to predictive performance, our proposed method uniquely bridges the gap in understanding how each feature contributes to fairness. This advancement is pivotal, given sepsis's significant mortality rate and its role in one-third of hospital deaths. Our method not only aids in identifying and mitigating biases within the predictive model but also fosters trust among healthcare stakeholders by improving the transparency and fairness of model predictions, thereby contributing to more equitable and trustworthy healthcare delivery.
- Abstract(参考訳): 人工知能は医療専門家を予測モデリングで支援し、臨床的な意思決定を大きく変える。
本研究は、多様な患者層にまたがる公平な結果を確保するために、医療におけるAIアプリケーションにおける公平性と説明可能性の必要性に対処する。
本稿では,敗血症関連死亡の予測モデルに焦点をあてて,パフォーマンス最適化予測モデルを学習し,伝達学習プロセスを用いてより公平なモデルを生成する手法を提案する。
また,予測の公平性を高めるために,各特徴の寄与を解明することを目的とした,新しい置換に基づく特徴重要度アルゴリズムを提案する。
予測性能に寄与する特徴を説明することに集中した既存の説明可能性手法とは異なり,提案手法は,各特徴が公平性に寄与するかを理解するギャップを独特に橋渡しする。
敗血症の死亡率と、病院での死亡数の3分の1での役割を考えると、この進歩は極めて重要である。
本手法は,予測モデル内のバイアスを識別・緩和するだけでなく,モデル予測の透明性と公平性を向上させることにより,医療関係者間の信頼を深め,より公平で信頼性の高い医療提供に寄与する。
関連論文リスト
- An ExplainableFair Framework for Prediction of Substance Use Disorder Treatment Completion [2.863968392011842]
本研究の目的は,公正性と説明可能性に対処する枠組みを開発し,実装することであった。
本稿では、まず最適化された性能を持つモデルを開発し、次にモデルバイアスを軽減するために内部処理アプローチを用いる、説明可能な公平性フレームワークを提案する。
得られた公正度向上モデルは、公正度の向上と、医療提供者が臨床意思決定と資源配分をガイドする上で有用な洞察を提供するであろう公正度向上の説明により、高い感度を維持している。
論文 参考訳(メタデータ) (2024-04-04T23:30:01Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
マルチモーダルICUデータを用いて病院内死亡率を予測するための,効率的で説明可能なAIソリューションを提案する。
我々は,臨床データから異種入力を受信し,意思決定を行うマルチモーダル・ラーニングを我々のフレームワークに導入する。
我々の枠組みは、医療研究において重要な要素の発見を容易にする他の臨床課題に容易に移行することができる。
論文 参考訳(メタデータ) (2023-12-29T14:28:04Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Explainable AI for clinical risk prediction: a survey of concepts,
methods, and modalities [2.9404725327650767]
臨床リスク予測のための説明可能なモデルの開発状況
外部検証の必要性と多様な解釈可能性メソッドの組み合わせを強調している。
臨床リスク予測における説明可能性へのエンドツーエンドアプローチは成功に不可欠である。
論文 参考訳(メタデータ) (2023-08-16T14:51:51Z) - Learning to Predict with Supporting Evidence: Applications to Clinical
Risk Prediction [9.199022926064009]
機械学習モデルがヘルスケアに与える影響は、医療専門家がこれらのモデルによって予測される信頼度に依存する。
予測が信頼されるべき理由に関するドメイン関連証拠を,臨床専門性のある人に提供するための方法を提示する。
論文 参考訳(メタデータ) (2021-03-04T00:26:32Z) - MIMIC-IF: Interpretability and Fairness Evaluation of Deep Learning
Models on MIMIC-IV Dataset [15.436560770086205]
MIMIC-IV (Medical Information Mart for Intensive Care, Version IV) は,医療データセットとして最大規模である。
本研究では,データセット表現バイアスの包括的解析と,深層学習モデルの解釈可能性と予測フェアネスを用いて,病院内死亡率予測を行う。
論文 参考訳(メタデータ) (2021-02-12T20:28:06Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。